Advance Search
Volume 43 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Li Haoxiang, Zheng Wei, Yin Huaqiang, Du Bin, Wang Qiuhao, He Xuedong, Ma Tao, Yang Xingtuan. Study on Decarburization and Oxidation Corrosion Behavior of T-22 Alloy in Impure Helium of High-temperature Gas-cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(4): 38-45. doi: 10.13832/j.jnpe.2022.04.0038
Citation: Li Haoxiang, Zheng Wei, Yin Huaqiang, Du Bin, Wang Qiuhao, He Xuedong, Ma Tao, Yang Xingtuan. Study on Decarburization and Oxidation Corrosion Behavior of T-22 Alloy in Impure Helium of High-temperature Gas-cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(4): 38-45. doi: 10.13832/j.jnpe.2022.04.0038

Study on Decarburization and Oxidation Corrosion Behavior of T-22 Alloy in Impure Helium of High-temperature Gas-cooled Reactor

doi: 10.13832/j.jnpe.2022.04.0038
  • Received Date: 2021-06-18
  • Accepted Date: 2022-01-11
  • Rev Recd Date: 2021-10-21
  • Publish Date: 2022-08-04
  • Helium in the main coolant of high-temperature gas-cooled reactor (HTGR) contains trace impurities, which reacts with the alloy materials of the equipment at high temperature and cause corrosion of the materials. The corrosion test of T-22 alloy, an alternative material for high-temperature gas-cooled reactor steam generator, is carried out in four kinds of impure helium at 950 ℃, and the corrosion time is 50 h. Then the corroded T-22 alloy is characterized by weighing, scanning electron microscope, X-ray energy spectrum, electron probe microanalyzer and carbon sulfur analyzer. The results show that T-22 alloy does not form a continuous dense oxide layer under six corrosion conditions, internal oxidation occurs in the alloy and complete decarburization occurs, and the amount of decarburization is up to 92.86%. The mass change of T-22 alloy after corrosion is very small, and the alloy has been fully decarburized after corrosion for 50 h.

     

  • loading
  • [1]
    KUGELER K, ZHANG Z. Modular high-temperature gas cooled reactor power plant[M]. Beijing: Tsinghua University, 2019: 1-21.
    [2]
    ZHANG Z Y, WU Z X, WANG D Z, et al. Development strategy of high temperature gas cooled reactor in China[J]. Strategic Study of CAE, 2019, 21(1): 12-19.
    [3]
    ZIERMANN E. Review of 21 years of power operation at the AVR experimental nuclear power station in Jülich[J]. Nuclear Engineering and Design, 1990, 121(2): 135-142. doi: 10.1016/0029-5493(90)90098-I
    [4]
    QUADAKKERS W J. High temperature corrosion in the service environments of a nuclear process heat plant[J]. Materials Science and Engineering, 1987, 87: 107-112. doi: 10.1016/0025-5416(87)90366-1
    [5]
    FUJIKAWA S, HAYASHI H, NAKAZAWA T, et al. Achievement of reactor-outlet coolant temperature of 950℃ in HTTR[J]. Journal of Nuclear Science and Technology, 2004, 41(12): 1245-1254. doi: 10.1080/18811248.2004.9726354
    [6]
    PAN F, YAN Y F, XU B S, et al. Research on heat treatment of T22 steel high-pressure boiler pipe[J]. Steel Pipe, 2010, 39(1): 60-66.
    [7]
    MANNA G, CASTELLO P, HARSKAMP F, et al. Testing of welded 2.25CrMo steel, in hot, high-pressure hydrogen under creep conditions[J]. Engineering Fracture Mechanics, 2007, 74(6): 956-968. doi: 10.1016/j.engfracmech.2006.08.021
    [8]
    MORO L, GONZALEZ G, BRIZUELA G, et al. Influence of chromium and vanadium in the mechanical resistance of steels[J]. Materials Chemistry and Physics, 2008, 109(2-3): 212-216. doi: 10.1016/j.matchemphys.2007.11.030
    [9]
    LI J F, YU X B, DUAN H W, et al. Study on Localization of SA213 T-22 transfer heat tube for nuclear safety class one[J]. Hot Working Technology, 2016, 45(8): 82-84.
    [10]
    GU B S, LU Q, FU J Y, et al. Influence of oxidation temperature on the high-temperature oxide film forming behavior of T22 heat-exchange tubes[C]//The 2nd International Conference on Materials Science and Engineering Technology (MSET 2015). Shanghai: Shanghai Xiaoyu Culture Communication Co., Ltd., 2015: 72-78.
    [11]
    ZHENG W, LI H X, WANG Q H, et al. Oxidation behaviors of the high temperature alloys in the impure helium and argon[C]// International Conference on Nuclear Engineering. U.S. : American Society of Mechanical Engineers, 2021
    [12]
    LI H X, DU B, ZHENG W, et al. Corrosion behavior of superalloys in high temperature gas cooled reactor in impure helium with corrosion time[C]//International Conference on Nuclear Engineering. U.S. : American Society of Mechanical, 2021
    [13]
    王秋豪,李昊翔,郑伟,等. 高温气冷堆冷却剂杂质对高温合金材料高温性能影响的研究模型分析[J]. 核技术,2020, 43(4): 37-42.
    [14]
    朱江, 李智慧. 10 MW高温气冷堆一回路氦气品质研究[J]. 原子能科学技术,2010, 44(S1): 274-278. doi: 10.3969/j.issn.0258-0926.2005.01.011
    [15]
    李昊翔, 郑伟, 银华强, 等. 高温堆非纯氦气中预氧化对3种高温合金的腐蚀行为影响研究[J/OL]. 原子能科学技术: 1-9. [2021-11-25]. http://kns.cnki.net/kcms/detail/11.2044.TL.20211112.1608.006.html.
    [16]
    池成忠,贺志勇,高原,等. 表面渗铬T8钢中碳迁移的热力学分析[J]. 中国表面工程,2004, 17(4): 38-41. doi: 10.3321/j.issn:1007-9289.2004.04.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (231) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return