Advance Search
Volume 43 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Yu Hang, Zhao Xinwen, Fu Shengwei, Zhu Kang. Structural Integrity Analysis of Fuel Element Cladding Based on Fluid-Solid-Heat Coupling[J]. Nuclear Power Engineering, 2022, 43(4): 106-112. doi: 10.13832/j.jnpe.2022.04.0106
Citation: Yu Hang, Zhao Xinwen, Fu Shengwei, Zhu Kang. Structural Integrity Analysis of Fuel Element Cladding Based on Fluid-Solid-Heat Coupling[J]. Nuclear Power Engineering, 2022, 43(4): 106-112. doi: 10.13832/j.jnpe.2022.04.0106

Structural Integrity Analysis of Fuel Element Cladding Based on Fluid-Solid-Heat Coupling

doi: 10.13832/j.jnpe.2022.04.0106
  • Received Date: 2021-06-17
  • Accepted Date: 2021-06-23
  • Rev Recd Date: 2021-06-23
  • Publish Date: 2022-08-04
  • When a transient condition occurs in the reactor system, the transient and great change of the coolant will impact the structural integrity of the fuel element cladding and endanger the safety of the reactor. In this paper, taking the 3×3 fuel assembly of a PWR as the object, 3D refined simulation of the flow and heat transfer characteristics of fuel assembly and temperature, deformation and stress of fuel element cladding under cold water accident is carried out with the fluid-solid-thermal coupling method. The results show that the spacer grid can enhance the convective heat transfer intensity on the fuel rod surface; When the cladding is deformed, it bends to the side in contact with the rigid convex and bulges to the side in contact with the spring; the temperature and the maximum equivalent stress of the contact part between the cladding and the spacer grid increase with the accident time, and the maximum equivalent stress exceeds the yield strength of the cladding material, which will cause strength failure and affect its structural integrity. The research in this paper can provide reference for the integrity evaluation of reactor fuel element cladding under transient condition.

     

  • loading
  • [1]
    NAGASE F, CHUTO T, FUKETA T. Behavior of high burn-up fuel cladding under LOCA conditions[J]. Journal of Nuclear Science and Technology, 2009, 46(7): 763-769. doi: 10.1080/18811248.2007.9711583
    [2]
    KHVOSTOV G. Analysis of cladding failure in a BWR fuel rod using a SLICE-DO model of the FALCON code[J]. Nuclear Engineering and Technology, 2020, 52(12): 2887-2900. doi: 10.1016/j.net.2020.05.015
    [3]
    HALABUK D, NAVRAT T. Thermomechanical assessment of fuel rod cladding made of zirconium alloy and silicon carbide material during reactivity-initiated accident[J]. Nuclear Science and Engineering, 2018, 189(1): 69-81. doi: 10.1080/00295639.2017.1373518
    [4]
    路怀玉,唐昌兵,李垣明,等. 热管堆燃料棒辐照-热-力学行为的数值研究[J]. 冶金管理,2020(5): 38-39.
    [5]
    王璐,庞华,青涛,等. 反应堆Ⅱ类瞬态工况燃料棒包壳应变分析研究[J]. 应用科技,2019, 46(5): 76-79.
    [6]
    王烨. 压水堆棒束通道流动与传热耦合数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [7]
    余航,赵新文,傅晟威. 船用核动力装置止回阀的流固热耦合研究[J]. 核动力工程,2019, 40(4): 25-28.
    [8]
    孙汉虹, 程平东, 缪鸿兴, 等. 第三代核电技术AP1000[M]. 第二版. 北京: 中国电力出版社, 2016: 39-40.
    [9]
    刘卢果,江光明,李松蔚,等. 单相4×4棒束流动试验的CFD方法验证[J]. 核动力工程,2019, 40(4): 177-182.
    [10]
    秦勉,蒲曾坪,陈平,等. 定位格架静态屈曲载荷分析方法研究[J]. 核动力工程,2018, 39(S1): 28-33.
    [11]
    刘鸿文. 材料力学Ⅰ[M]. 北京: 高等教育出版社, 2017: 255-260.
    [12]
    周邦新,马继梅,杨敏华,等. Zr-4板材拉伸性能的研究[J]. 核动力工程,1988, 9(4): 64-68.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (434) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return