Citation: | Guo Junliang, Kong Huanjun, Gui Miao, Peng Yujiao, Shan Jianqiang. Assessment of LUT-2006 Subcooled CHF Prediction at PWR Conditions with Freon CHF Data[J]. Nuclear Power Engineering, 2022, 43(5): 27-33. doi: 10.13832/j.jnpe.2022.05.0027 |
[1] |
KATTO Y, OHNO H. An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer, 1984, 27(9): 1641-1648. doi: 10.1016/0017-9310(84)90276-X
|
[2] |
BOWRING R W. Simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7 to 17 MN/m2 (100 to 2500 psia), AEEW-R-789[R]. Winfrith: Atomic Energy Establishment, 1972.
|
[3] |
HALL D D, MUDAWAR I. Critical heat flux (CHF) for water flow in tubes—II. : subcooled CHF correlations[J]. International Journal of Heat and Mass Transfer, 2000, 43(14): 2605-2640. doi: 10.1016/S0017-9310(99)00192-1
|
[4] |
SHAH M M. A generalized graphical method for predicting chf in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 557-568. doi: 10.1016/0017-9310(79)90059-0
|
[5] |
LEE C H, MUDAWWAR I. A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions[J]. International Journal of Multiphase Flow, 1988, 14(6): 711-728. doi: 10.1016/0301-9322(88)90070-5
|
[6] |
HARAMURA Y, KATTO Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids[J]. International Journal of Heat and Mass Transfer, 1983, 26(3): 389-399. doi: 10.1016/0017-9310(83)90043-1
|
[7] |
WEISMAN J, PEI B S. Prediction of critical heat flux in flow boiling at low qualities[J]. International Journal of Heat and Mass Transfer, 1983, 26(10): 1463-1477. doi: 10.1016/S0017-9310(83)80047-7
|
[8] |
LEVY S, HEALZER J M, ABDOLLAHIAN D. Prediction of critical heat flux in vertical pipe flow[J]. Nuclear Engineering and Design, 1981, 65(1): 131-140. doi: 10.1016/0029-5493(81)90126-6
|
[9] |
GROENEVELD D C, SHAN J Q, VASIĆ A Z, et al. The 2006 CHF look-up table[J]. Nuclear Engineering and Design, 2007, 237(15-17): 1909-1922. doi: 10.1016/j.nucengdes.2007.02.014
|
[10] |
TONG L S. Thermal analysis of pressurized water reactors[J]. Nuclear Science and Engineering, 1972, 48(2): 233. doi: 10.13182/NSE72-A22480
|
[11] |
MOTLEY F E, HILL K W, CADEK F F, et al. New Westinghouse correlation WRB-1 for predicting critical heat flux in rod bundles with mixing vane grids: WCAP-8763[R]. Pittsburgh: Westinghouse Electric Corp. , 1976.
|
[12] |
STEVENS G F. A quantitative comparison between burnout data for water at 1000lb/in2 and freon 12 at 155lb/in2 uniformly heated round tubes vertical upwards: AEWW-R-327[R]. Winfrith: Atomic Energy Establishment, 1964.
|
[13] |
AHMAD S Y. Fluid to fluid modeling of critical heat flux: a compensated distortion model[J]. International Journal of Heat and Mass Transfer, 1973, 16(3): 641-662. doi: 10.1016/0017-9310(73)90229-9
|
[14] |
KATTO Y. A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes—a supplementary report[J]. International Journal of Heat and Mass Transfer, 1979, 22(6): 783-794. doi: 10.1016/0017-9310(79)90017-6
|
[15] |
PIORO I L, GROENEVELD D C, CHENG S C, et al. Comparison of CHF measurements in R-134a cooled tubes and the water CHF look-up table[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 73-88. doi: 10.1016/S0017-9310(00)00093-4
|
[16] |
CHUN S Y, HONG S D, CHO Y S, et al. Comparison of the CHF data for water and refrigerant HFC-134a by using the fluid-to-fluid modeling methods[J]. International Journal of Heat and Mass Transfer, 2007, 50(21-22): 4446-4456. doi: 10.1016/j.ijheatmasstransfer.2005.06.039
|
[17] |
TAIN R M, CHENG S C, GROENEVELD D C. Critical heat flux measurements in a round tube for CFCs and CFC alternatives[J]. International Journal of Heat and Mass Transfer, 1993, 36(8): 3039-2049. doi: 10.1016/S0017-9310(05)80135-8
|
[18] |
AKHTAR S W, MOON S K, CHUN S Y, et al. Modeling capability of R134a for a critical heat flux of water in a vertical 5 × 5 rod bundle geometry[J]. International Journal of Heat and Mass Transfer, 2006, 49(7-8): 1299-1309. doi: 10.1016/j.ijheatmasstransfer.2005.10.019
|
[19] |
CHENG X. Experimental investigations on critical heat flux in 8 mm tubes and in 7-rod bundles: KfK-Report 4884[R]. German: Research Center Karlsruhe, 1991. (in German)
|
[20] |
DOERFFER S, GROENEVELD D C, CHENG S C. A comparison of critical heat flux in tubes and bilaterally heated annuli[J]. Nuclear Engineering and Design, 1997, 177(1-3): 105-120. doi: 10.1016/S0029-5493(97)00188-X
|
[21] |
KATTO Y, YOKOYA S, MIAKE S, et al. Critical heat flux on a uniformly heated cylinder in a cross flow of saturated liquid over a very wide range of vapor-to-liquid density ratio[J]. International Journal of Heat and Mass Transfer, 1987, 30(9): 1971-1977. doi: 10.1016/0017-9310(87)90255-9
|
[22] |
GROENEVELD D C. On the definition of critical heat flux margin[J]. Nuclear Engineering and Design, 1996, 163(1-2): 245-247. doi: 10.1016/0029-5493(95)01173-0
|