Citation: | Qi Wei, Bu Shanshan, Li Zhenzhong, Ma Zaiyong, Zhang Luteng, Chen Deqi. Numerical Study on Dryout Critical Boiling in Vertical Circular Tube under Rolling Conditions[J]. Nuclear Power Engineering, 2022, 43(5): 63-69. doi: 10.13832/j.jnpe.2022.05.0063 |
[1] |
高璞珍,王兆祥,庞凤阁,等. 摇摆情况下水的自然循环临界热流密度实验研究[J]. 哈尔滨工程大学学报,1997, 18(6): 38-42.
|
[2] |
HWANG J S, LEE Y G, PARK G C. Characteristics of critical heat flux under rolling condition for flow boiling in vertical tube[J]. Nuclear Engineering and Design, 2012, 252: 153-162. doi: 10.1016/j.nucengdes.2012.06.032
|
[3] |
TANJUNG E F, JO D. Visualization study on pool boiling critical heat flux under rolling motion[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119620. doi: 10.1016/j.ijheatmasstransfer.2020.119620
|
[4] |
徐海淞. 基于拉格朗日—欧拉法的环状流模拟及干涸型临界热流密度预测研究[D]. 上海: 上海交通大学, 2019.
|
[5] |
陈丽娟. 竖直加热管道内干涸型临界沸腾数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2018.
|
[6] |
DU D X, TIAN W X, SU G H, et al. Theoretical study on the characteristics of critical heat flux in vertical narrow rectangular channels[J]. Applied Thermal Engineering, 2012, 36: 21-31. doi: 10.1016/j.applthermaleng.2011.11.039
|
[7] |
GUI M Y, TIAN W X, WU D, et al. Development of a three-field mechanistic model for dryout prediction in annular flow[J]. Annals of Nuclear Energy, 2020, 135: 106978. doi: 10.1016/j.anucene.2019.106978
|
[8] |
GUI M Y, TIAN W X, WU D, et al. Study on CHF characteristics in narrow rectangular channel under complex motion condition[J]. Applied Thermal Engineering, 2020, 166: 114629. doi: 10.1016/j.applthermaleng.2019.114629
|
[9] |
桂民洋,田文喜,吴迪,等. 棒束子通道CHF机理模型开发及初步验证[J]. 原子能科学技术,2021, 55(11): 1930-1938. doi: 10.7538/yzk.2021.youxian.0046
|
[10] |
PENG J, CHEN D Q, XU J J, et al. CFD simulation focusing on void distribution of subcooled flow boiling in circular tube under rolling condition[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119790. doi: 10.1016/j.ijheatmasstransfer.2020.119790
|
[11] |
TENTNER A, LO S, IOILEV A, et al. Computational fluid dynamics modeling of two-phase flow topologies in a boiling water reactor fuel assembly[C]//Proceedings of the 16th International Conference on Nuclear Engineering. Orlando: ASME, 2008: 178-183.
|
[12] |
RANZ W E, MARSHALL W R. Evaporation from drops[J]. Chemical Engineering Progress, 1952, 48(3): 141-146.
|
[13] |
魏列. 运动条件对自然循环系统驱动力特性的影响机制研究[D]. 重庆: 重庆大学, 2020.
|
[14] |
BECKER K M, LING C H, HEDBERG S, et al. An experimental investigation of post dryout heat transfer[R]. Stockholm: Department of Nuclear Reactor Engineering Royal Institute of Technology Stockholm, 1983.
|
[15] |
史建新. 直管式直流蒸汽发生器蒸干及蒸干后传热数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2019.
|
1. | 孙梓云,周新志,何正熙,朱加良,徐涛,董晨龙. 华龙一号反应堆上腔室及热段流-热耦合场数值模拟. 科学技术与工程. 2024(18): 7676-7684 . ![]() | |
2. | 陈广亮,章汉琦,陶文铨. 堆芯燃料组件域横流轮系结构与特性研究. 原子能科学技术. 2024(11): 2327-2335 . ![]() | |
3. | 刘奚彤,刘凯,王明军,王啸宇,田文喜,秋穗正,苏光辉. 弯曲变形工况下板状燃料堆芯三维热工水力特性分析. 原子能科学技术. 2023(S1): 67-78 . ![]() | |
4. | 危华,谢翀,肖卫明,汪春宇. 反应堆顶盖腔室流场实验研究. 科技创新与应用. 2023(22): 19-22 . ![]() | |
5. | 刘懿锐,董秀臣,张鑫,袁江涛. 摇摆条件下小型反应堆堆芯入口流量分配特性数值分析. 核动力工程. 2022(05): 89-94 . ![]() |