Citation: | Deng Jian, Xiong Qingwen, Gou Junli, Liu Yu, Bao Hui, Shen Danhong, Zhou Jiayue. PSA-Based Uncertainty Analysis of Pressurized Water Reactor LBLOCA[J]. Nuclear Power Engineering, 2022, 43(5): 188-194. doi: 10.13832/j.jnpe.2022.05.0188 |
[1] |
单建强, 廖承奎, 苟军利, 等. 压水堆核电厂瞬态安全数值分析方法[M]. 西安: 西安交通大学出版社, 2016: 229.
|
[2] |
周法清. 核电厂概率安全评价[M]. 上海: 上海交通大学出版社, 1996: 243.
|
[3] |
IAEA. Safety margins of operating reactors analysis of uncertainties and implications for decision making: IAEA TECDOC No. 1332[R]. Vienna: IAEA, 2003.
|
[4] |
靖剑平,贾斌,高新力,等. 最佳估算加不确定性分析方法在我国核安全审评中的应用[J]. 核安全,2016, 15(4): 11-17.
|
[5] |
IAEA. Accident analysis for nuclear power plants: safety reports series No. 23[R]. Vienna: IAEA, 2002.
|
[6] |
KANG D G, AHN S H, CHANG S H. A combined deterministic and probabilistic procedure for safety assessment of beyond design basis accidents in nuclear power plant: application to ECCS performance assessment for design basis LOCA redefinition[J]. Nuclear Engineering and Design, 2013, 260: 165-174. doi: 10.1016/j.nucengdes.2013.03.033
|
[7] |
MARTORELL S, SÁNCHEZ-SÁEZ F, VILLANUEVA J F, et al. An extended BEPU approach integrating probabilistic assumptions on the availability of safety systems in deterministic safety analyses[J]. Reliability Engineering & System Safety, 2017, 167: 474-483.
|
[8] |
DU Y, LI H X, LIANG T H, et al. Uncertainty analysis of the conditional exceedance probability calculation for a probabilistically significant SBO sequence[J]. Nuclear Technology, 2019, 205(1-2): 128-139. doi: 10.1080/00295450.2018.1494998
|
[9] |
DENG J, DING S H, LI Z C, et al. The development of ARSAC for modeling nuclear power plant system[J]. Progress in Nuclear Energy, 2021, 140: 103880. doi: 10.1016/j.pnucene.2021.103880
|
[10] |
NISSLEY M E, FREPOLI C, OHKAWA K, et al. Realistic large-break LOCA evaluation methodology using the automated statistical treatment of uncertainty method (ASTRUM): Westinghouse Propriety Report, WCAP-1[R]. 2003
|
[11] |
IAEA. Procedures for conducting probabilistic safety assessments of nuclear power plants (level 1): IAEA safety series NO. 50-p-4[R]. Vienna: IAEA, 1992.
|
[12] |
ZIO E. Integrated deterministic and probabilistic safety assessment: concepts, challenges, research directions[J]. Nuclear Engineering and Design, 2014, 280: 413-419. doi: 10.1016/j.nucengdes.2014.09.004
|
[13] |
王洋洋. 核电厂典型事故分析不确定性评价方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
|
[14] |
宋建阳,杨江,刘井泉,等. 风险指引的CPR1000核电厂LBLOCA分析方法初步研究[J]. 原子能科学技术,2018, 52(6): 1028-1033. doi: 10.7538/yzk.2017.youxian.0497
|
[15] |
BOYACK B, DUFFEY R, GRIFFITH G, et al. Quantifying reactor safety margins: application of code scaling, applicability, and uncertainty evaluation methodology to a large-break, loss-of-coolant accident: NUREG/CR-5249[R]. Washington: EG&G Idaho, 1989.
|
[16] |
XIONG Q W, GOU J L, CHEN W, et al. Investigation of uncertainty quantification methods for constitutive models and the application to LOFT LBLOCA[J]. Annals of Nuclear Energy, 2019, 132: 119-133. doi: 10.1016/j.anucene.2019.04.028
|
[17] |
REVENTOS F, PEREZ M, BATET L, et al. BEMUSE phase V report: uncertainty and sensitivity analysis of a LBLOCA in Zion nuclear power plant: NEA/SCNI/R(2009)13[R]. OECD, 2009
|
[18] |
USNRC. Estimating loss-of-coolant accident (LOCA) frequencies through the elicitation process: NUREG-1829[R]. Washington: USNRC, 2008.
|