Advance Search
Volume 43 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Feng Qianyi, Guo Zhangpeng, Li Zhongchun, Zhang Jiayu, Zhao Houjian, Ruan Yanghui, Yu Yu. Research on Fast Prediction of Key Parameters of Containment Based on Time Series Deep Learning Model[J]. Nuclear Power Engineering, 2022, 43(6): 79-84. doi: 10.13832/j.jnpe.2022.06.0079
Citation: Feng Qianyi, Guo Zhangpeng, Li Zhongchun, Zhang Jiayu, Zhao Houjian, Ruan Yanghui, Yu Yu. Research on Fast Prediction of Key Parameters of Containment Based on Time Series Deep Learning Model[J]. Nuclear Power Engineering, 2022, 43(6): 79-84. doi: 10.13832/j.jnpe.2022.06.0079

Research on Fast Prediction of Key Parameters of Containment Based on Time Series Deep Learning Model

doi: 10.13832/j.jnpe.2022.06.0079
  • Received Date: 2021-11-06
  • Rev Recd Date: 2022-06-07
  • Publish Date: 2022-12-14
  • The Main Steam Line Break (MSLB) accident threatens the safe operation of nuclear power plant. In this paper, the time-dependent transient response of key safety parameters of passive containment cooling system (PCCS) in nuclear power plant under MSLB accident is predicted based on time series deep learning model. The transient safety parameters are taken as the research objects. The data are preprocessed by linear normalization and feature label segmentation, trained by short-term data sets, and the time series deep learning model of single parameter and multi parameter coordination is established by using long short-term memory (LSTM) and recurrent neural network (RNN); long-term untrained data sets are predicted by a multi-parameter coordination model. The research shows that the prediction based on time series deep learning model is applicable under the same accident and different working conditions; it is feasible to predict long-term data based on short-term training data; the prediction accuracy of the single-parameter model or multi-parameter coordination model using LSTM is higher than that of RNN. The deep learning model based on LSTM can effectively, accurately and quickly predict the transient safety parameter response characteristics of PCCS under MSLB accidents, and can provide a fast prediction and analysis model for accident safety analysis.

     

  • loading
  • [1]
    国务院. 新一代人工智能发展规划[J]. 科技创新与生产力,2017(8): 2,121.
    [2]
    杨红义,王端,王东东. 神经网络算法在我国核领域中的应用综述[J]. 核科学与技术,2020, 8(1): 19-34.
    [3]
    王端,王威策,潘翠杰,等. 基于自适应BP神经网络的压水堆堆芯换料关键参数的预测方法[J]. 原子能科学技术,2020, 54(1): 112-118. doi: 10.7538/yzk.2019.youxian.0016
    [4]
    韩龙,周刚,孙旭升. 基于集成神经网络与模糊逻辑融合的稳压器泄漏监测方法[J]. 原子能科学技术,2014, 48(S1): 474-479.
    [5]
    龚安,马光明,郭文婷,等. 基于LSTM循环神经网络的核电设备状态预测[J]. 计算机技术与发展,2019, 29(10): 41-45. doi: 10.3969/j.issn.1673-629X.2019.10.009
    [6]
    佘兢克,薛时雨,孙培伟,等. 基于深度学习的核电站事故预测及故障诊断方法[J]. 仪器仪表用户,2019, 26(12): 39-44. doi: 10.3969/j.issn.1671-1041.2019.12.010
    [7]
    ZHANG J, WANG X L, ZHAO C, et al. Application of cost-sensitive LSTM in water level prediction for nuclear reactor pressurizer[J]. Nuclear Engineering and Technology, 2020, 52(7): 1429-1435. doi: 10.1016/j.net.2019.12.025
    [8]
    WANG H, PENG M J, LIU Y K, et al. Remaining useful life prediction techniques of electric valves for nuclear power plants with convolution kernel and LSTM[J]. Science and Technology of Nuclear Installations, 2020, 2020: 8349349.
    [9]
    ZAGHLOUL M A S, HASSAN A M, CARPENTER D, et al. Optical sensor behavior prediction using LSTM neural network[C]//2019 IEEE Photonics Conference (IPC). San Antonio, TX, USA: IEEE, 2019.
    [10]
    LEE D, SEONG P H, KIM J. Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework[J]. Annals of Nuclear Energy, 2018, 119: 287-299. doi: 10.1016/j.anucene.2018.05.020
    [11]
    SUN Q T, GUO Z P, CHEN W, et al. Global sensitivity analysis of the main steam line break accident by using sampling methods and surrogate models[J]. Annals of Nuclear Energy, 2021, 150: 107787. doi: 10.1016/j.anucene.2020.107787
    [12]
    赵炳南. 事故情况下非能动安全壳冷却系统降温降压特点与运行浅析[J]. 城市建设理论研究(电子版),2020(2): 5.
    [13]
    胡健,温丽晶,石兴伟,等. 基于WGOTHIC程序的非能动安全壳冷却系统传热特性分析[J]. 核安全,2017, 16(4): 71-77. doi: 10.16432/j.cnki.1672-5360.2017.04.013
    [14]
    林诚格. 非能动安全先进核电厂AP1000[M]. 北京: 中国原子能出版社, 2010: 198.
    [15]
    YU Y, DI MAIO F, ZIO E, et al. An efficient method for passive safety systems reliability assessment[J]. Annals of Nuclear Energy, 2020, 141: 107347. doi: 10.1016/j.anucene.2020.107347
    [16]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [17]
    KOLEN J F, KREMER S C. Gradient Flow in Recurrent Nets-the Difficulty of Learning Long-Term Dependencies [M]. USA: Wiley-IEEE Press, 2001: 237-243.
    [18]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (255) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return