Citation: | Feng Qianyi, Guo Zhangpeng, Li Zhongchun, Zhang Jiayu, Zhao Houjian, Ruan Yanghui, Yu Yu. Research on Fast Prediction of Key Parameters of Containment Based on Time Series Deep Learning Model[J]. Nuclear Power Engineering, 2022, 43(6): 79-84. doi: 10.13832/j.jnpe.2022.06.0079 |
[1] |
国务院. 新一代人工智能发展规划[J]. 科技创新与生产力,2017(8): 2,121.
|
[2] |
杨红义,王端,王东东. 神经网络算法在我国核领域中的应用综述[J]. 核科学与技术,2020, 8(1): 19-34.
|
[3] |
王端,王威策,潘翠杰,等. 基于自适应BP神经网络的压水堆堆芯换料关键参数的预测方法[J]. 原子能科学技术,2020, 54(1): 112-118. doi: 10.7538/yzk.2019.youxian.0016
|
[4] |
韩龙,周刚,孙旭升. 基于集成神经网络与模糊逻辑融合的稳压器泄漏监测方法[J]. 原子能科学技术,2014, 48(S1): 474-479.
|
[5] |
龚安,马光明,郭文婷,等. 基于LSTM循环神经网络的核电设备状态预测[J]. 计算机技术与发展,2019, 29(10): 41-45. doi: 10.3969/j.issn.1673-629X.2019.10.009
|
[6] |
佘兢克,薛时雨,孙培伟,等. 基于深度学习的核电站事故预测及故障诊断方法[J]. 仪器仪表用户,2019, 26(12): 39-44. doi: 10.3969/j.issn.1671-1041.2019.12.010
|
[7] |
ZHANG J, WANG X L, ZHAO C, et al. Application of cost-sensitive LSTM in water level prediction for nuclear reactor pressurizer[J]. Nuclear Engineering and Technology, 2020, 52(7): 1429-1435. doi: 10.1016/j.net.2019.12.025
|
[8] |
WANG H, PENG M J, LIU Y K, et al. Remaining useful life prediction techniques of electric valves for nuclear power plants with convolution kernel and LSTM[J]. Science and Technology of Nuclear Installations, 2020, 2020: 8349349.
|
[9] |
ZAGHLOUL M A S, HASSAN A M, CARPENTER D, et al. Optical sensor behavior prediction using LSTM neural network[C]//2019 IEEE Photonics Conference (IPC). San Antonio, TX, USA: IEEE, 2019.
|
[10] |
LEE D, SEONG P H, KIM J. Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework[J]. Annals of Nuclear Energy, 2018, 119: 287-299. doi: 10.1016/j.anucene.2018.05.020
|
[11] |
SUN Q T, GUO Z P, CHEN W, et al. Global sensitivity analysis of the main steam line break accident by using sampling methods and surrogate models[J]. Annals of Nuclear Energy, 2021, 150: 107787. doi: 10.1016/j.anucene.2020.107787
|
[12] |
赵炳南. 事故情况下非能动安全壳冷却系统降温降压特点与运行浅析[J]. 城市建设理论研究(电子版),2020(2): 5.
|
[13] |
胡健,温丽晶,石兴伟,等. 基于WGOTHIC程序的非能动安全壳冷却系统传热特性分析[J]. 核安全,2017, 16(4): 71-77. doi: 10.16432/j.cnki.1672-5360.2017.04.013
|
[14] |
林诚格. 非能动安全先进核电厂AP1000[M]. 北京: 中国原子能出版社, 2010: 198.
|
[15] |
YU Y, DI MAIO F, ZIO E, et al. An efficient method for passive safety systems reliability assessment[J]. Annals of Nuclear Energy, 2020, 141: 107347. doi: 10.1016/j.anucene.2020.107347
|
[16] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
|
[17] |
KOLEN J F, KREMER S C. Gradient Flow in Recurrent Nets-the Difficulty of Learning Long-Term Dependencies [M]. USA: Wiley-IEEE Press, 2001: 237-243.
|
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|