Citation: | Su Haozhan, Wang Peng, Zhang Lefu. Effect of Working Medium Pressure and Creep on the Stress Corrosion Cracking Behavior of Cold Deformed 310S Stainless Steel in Supercritical Water Environment[J]. Nuclear Power Engineering, 2022, 43(6): 108-116. doi: 10.13832/j.jnpe.2022.06.0108 |
[1] |
黄彦平,臧金光. 超临界水冷堆[J]. 现代物理知识,2018, 30(4): 19-24. doi: 10.13405/j.cnki.xdwz.2018.04.006
|
[2] |
RAHMAN M M, JI D X, JAHAN N, et al. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: a review[J]. Progress in Nuclear Energy, 2020, 124: 103320. doi: 10.1016/j.pnucene.2020.103320
|
[3] |
熊茹. SCWR候选包壳材料310S不锈钢应用性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
|
[4] |
NEZAKAT M, AKHIANI H, PENTTILÄ S, et al. Oxidation Behavior of Austenitic Stainless Steel 316L and 310S in Air and Supercritical Water[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(2): 021008. doi: 10.1115/1.4031817
|
[5] |
AMIRKHIZ B S, LI J, ZENG Y M, et al. TEM study of supercritical water corrosion in 310S and 800H alloys[J]. Microscopy and Microanalysis, 2014, 20(S3): 1866-1867. doi: 10.1017/S1431927614011064
|
[6] |
BEHNAMIAN Y, MOSTAFAEI A, KOHANDEHGHAN A, et al. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500℃[J]. Materials Characterization, 2016, 120: 273-284. doi: 10.1016/j.matchar.2016.09.013
|
[7] |
BEHNAMIAN Y, MOSTAFAEI A, KOHANDEHGHAN A, et al. Internal oxidation and crack susceptibility of alloy 310S stainless steel after long term exposure to supercritical water at 500℃[J]. The Journal of Supercritical Fluids, 2017, 120: 161-172. doi: 10.1016/j.supflu.2016.09.007
|
[8] |
YOUNG D J, PINT B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxidation of Metals, 2006, 66(3-4): 137-153. doi: 10.1007/s11085-006-9030-1
|
[9] |
GUO S W, XU D H, LI Y H, et al. Corrosion characteristics and mechanisms of typical Ni-based corrosion-resistant alloys in sub- and supercritical water[J]. The Journal of Supercritical Fluids, 2021, 170: 105138. doi: 10.1016/j.supflu.2020.105138
|
[10] |
ZHANG Y C, LI M C, BI H Y, et al. Mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steel at low ambient temperature[J]. Materials Science and Engineering:A, 2019, 759: 224-233. doi: 10.1016/j.msea.2019.05.045
|
[11] |
PAYET M, MARCHETTI L, TABARANT M, et al. Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes[J]. Corrosion Science, 2019, 157: 157-166. doi: 10.1016/j.corsci.2019.05.014
|
[12] |
YUAN J T, WU X M, WANG W, et al. The effect of surface finish on the scaling behavior of stainless steel in steam and supercritical water[J]. Oxidation of Metals, 2013, 79(5-6): 541-551. doi: 10.1007/s11085-013-9380-4
|
[13] |
ARIOKA K, YAMADA T, TERACHI T, et al. Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. CORROSION, 2007, 63(12): 1114-1123. doi: 10.5006/1.3278329
|
[14] |
LIU J H, TAN Y M, WANG Y, et al. Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations[J]. Nuclear Science and Techniques, 2018, 29(5): 76. doi: 10.1007/s41365-018-0405-1
|
[15] |
ZHONG Y P, ZHOU C, CHEN S Y, et al. Effects of temperature and pressure on stress corrosion cracking behavior of 310S stainless steel in chloride solution[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1): 200-206. doi: 10.3901/CJME.2016.0420.056
|
[16] |
WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 176-201. doi: 10.1016/j.jnucmat.2007.05.017
|
[17] |
WAS G S, TEYSSEYRE S, JIAO Z. Corrosion of austenitic alloys in supercritical water[J]. CORROSION, 2006, 62(11): 989-1005. doi: 10.5006/1.3278237
|
[18] |
SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016
|
[19] |
CHEN K, WANG J M, SHEN Z, et al. Comparison of the stress corrosion cracking growth behavior of cold worked Alloy 690 in subcritical and supercritical water[J]. Journal of Nuclear Materials, 2019, 520: 235-244. doi: 10.1016/j.jnucmat.2019.04.017
|
[20] |
李梦源. 高温蒸汽环境对电站锅炉管材料应力腐蚀裂纹扩展影响研究[D]. 北京: 华北电力大学(北京), 2016.
|
[21] |
SHEN Z, ZHANG L F, TANG R, et al. SCC susceptibility of type 316Ti stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2015, 458: 206-215. doi: 10.1016/j.jnucmat.2014.12.014
|
[22] |
SHEN Z, ZHANG L F, TANG R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW[J]. Journal of Nuclear Materials, 2014, 454(1-3): 274-282. doi: 10.1016/j.jnucmat.2014.08.006
|
[23] |
LIU J H, TAN Y M, JIANG E, et al. Stress corrosion cracking behavior of 310S stainless steel in supercritical water at different temperature[J]. Materials and Corrosion, 2019, 70(5): 868-876. doi: 10.1002/maco.201810565
|
[24] |
ARIOKA K, YAMADA T, MIYAMOTO T, et al. Dependence of stress corrosion cracking of alloy 690 on temperature, cold work, and carbide precipitation-role of diffusion of vacancies at crack tips[J]. CORROSION, 2011, 67(3): 035006.
|
[25] |
ARIOKA K, MIYAMOTO T, YAMADA T, et al. Role of cavity formation in crack initiation of cold-worked carbon steel in high-temperature water[J]. CORROSION, 2013, 69(5): 487-496. doi: 10.5006/0821
|
[26] |
CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of type 310S stainless steel in supercritical water[J]. CORROSION, 2018, 74(7): 776-787. doi: 10.5006/2775
|
[27] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 平面应变断裂韧度KIC试验方法: GB/T 4161-2007[S]. 北京: 中国标准出版社, 2008: 1-18.
|
[28] |
XIAO B J, HUANG X, YANG Q, et al. Effect of steam temperature and pressure on the oxidation of potential coating alloy FeCrAl for supercritical water-cooled reactor application[J]. Journal of Nuclear Engineering and Radiation Science, 2019, 5(4): 041204. doi: 10.1115/1.4042500
|
[29] |
HAMDANI F, SHOJI T. Oxidation behavior of UHP Fe-based model alloy and SUS310S steel in superheated steam and supercritical water conditions[J]. Oxidation of Metals, 2018, 89(3-4): 319-330. doi: 10.1007/s11085-017-9788-3
|
[30] |
HOLCOMB G R. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines[J]. Journal of the Electrochemical Society, 2009, 156(9): C292-C297. doi: 10.1149/1.3155442
|
[31] |
AINSWORTH R A. Creep cracking[M]. MILNE I, RITCHIE R O, KARIHALOO B. Comprehensive Structural Integrity. Amsterdam: Elsevier, 2003: 75-87.
|
[32] |
ARIOKA K. Change in bonding strength at grain boundaries before long-term SCC initiation[J]. CORROSION, 2015, 71(4): 403-419. doi: 10.5006/1573
|
[33] |
LIU X B, YAN L G, ZHANG X F. Suppressing precipitation during the reverse transformation from martensite to austenite in a cold-rolled austenite stainless steel[J]. Materials Science and Engineering:A, 2021, 804: 140514. doi: 10.1016/j.msea.2020.140514
|
[34] |
孟杨,任群,鞠新华. 利用局域取向差衡量变形金属中的位错密度[J]. 材料热处理学报,2014, 35(11): 122-128. doi: 10.13289/j.issn.1009-6264.2014.11.023
|