Advance Search
Volume 43 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Li Pengzhou, Li Yilei, Yao Di, Luo Jiacheng, Sun Lei, Qiao Hongwei. Research on High Temperature Mechanical Properties of Main Pipeline Materials[J]. Nuclear Power Engineering, 2022, 43(6): 139-145. doi: 10.13832/j.jnpe.2022.06.0139
Citation: Li Pengzhou, Li Yilei, Yao Di, Luo Jiacheng, Sun Lei, Qiao Hongwei. Research on High Temperature Mechanical Properties of Main Pipeline Materials[J]. Nuclear Power Engineering, 2022, 43(6): 139-145. doi: 10.13832/j.jnpe.2022.06.0139

Research on High Temperature Mechanical Properties of Main Pipeline Materials

doi: 10.13832/j.jnpe.2022.06.0139
  • Received Date: 2021-12-23
  • Rev Recd Date: 2022-03-15
  • Publish Date: 2022-12-14
  • In order to provide material property parameters for leak before break (LBB) design of nuclear power plant, it is necessary to measure the mechanical properties of base metal and welding material of main pipeline at high temperature, including the high-temperature dynamic mechanical properties of materials in seismic environment. Based on universal servo material testing machine and high-speed material testing machine, the static-dynamic tensile mechanical properties, crack growth rate and static-dynamic fracture toughness of nitrogen controlled 00Cr17Ni12Mo2 stainless steel and OK Tigrod 316L welding material for main pipeline base metal of nuclear power plant at high temperature (350℃) are measured. Compared with the normal temperature mechanical properties of the main pipeline base metal and welding materials, the static-dynamic tensile mechanical properties of the two materials at 350℃ and the static-dynamic fracture toughness of OK Tigrod 316L at 350℃ have significantly decreased compared with the normal temperature, and the crack growth resistance of the two materials at 350℃ has slightly decreased compared with the normal temperature. The research results can provide experimental technology and material parameter support for LBB design of nuclear power plant pipelines.

     

  • loading
  • [1]
    何风,吕勇波,艾红雷,等. LBB技术在核电站管道系统中的应用[J]. 管道技术与设备,2016(2): 1-4.
    [2]
    虞晓欢,杜娟,邵雪娇,等. 主曲线方法在核电厂压力容器老化延寿中的应用[J]. 核动力工程,2020, 41(2): 45-48.
    [3]
    郑连纲,白晓明,石凯凯,等. 主螺栓断裂对压力容器密封性能、应力及疲劳的影响分析[J]. 核动力工程,2020, 41(5): 70-73.
    [4]
    陈沛,查小琴,高灵清. 未爆先漏(LBB)理论及其应用研究进展[J]. 材料开发与应用,2013, 28(4): 89-95.
    [5]
    李朋洲,乔红威,孙磊. 核反应堆管道LBB设计关键软件研发[J]. 核动力工程,2014, 35(6): 57-60.
    [6]
    蒋冬梅,杜颖,袁小兰. LBB在AP1000技术中的应用[J]. 南华大学学报:自然科学版,2015, 29(4): 7-11.
    [7]
    蒋天植,沈峰,杨戴博,等. LBB泄漏监测系统在三代压水堆核电厂的应用研究[J]. 科技视界,2017(6): 20-21.
    [8]
    乔红威,李琦,刘志伟,等. LBB设计中管道贯穿裂纹张开位移及泄漏率计算研究[J]. 核技术,2013, 36(4): 040619.
    [9]
    乔红威,刘志伟,李琦,等. LBB裂纹稳定性分析方法研究[J]. 原子能科学技术,2013, 47(11): 2108-2113.
    [10]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 拉伸试验 第2部分: 高温试验方法: GB/T 228.2-2015[S]. 北京: 中国标准出版社, 2016.
    [11]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 高应变速率拉伸试验 第2部分: 液压伺服型与其他类型试验系统: GB/T 30069.2-2016[S]. 北京: 中国标准出版社, 2016.
    [12]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 疲劳试验 疲劳裂纹扩展方法: GB/T 6398-2017[S]. 北京: 中国标准出版社, 2017.
    [13]
    李朋洲,李一磊,姚迪,等. 主管道用材中低加载速率下常温断裂性能研究[J]. 核动力工程,2021, 42(5): 123-127.
    [14]
    李一磊,姚迪,乔红威,等. 金属材料中低加载速率下的动态韧脆转变及断裂韧性测量[J]. 力学学报,2021, 53(2): 424-436.
    [15]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 准静态断裂韧度的统一试验方法: GB/T 21143-2014[S]. 北京: 中国标准出版社, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(8)

    Article Metrics

    Article views (131) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return