Advance Search
Volume 43 Issue S1
Jul.  2022
Turn off MathJax
Article Contents
Guo Yanhui, Sun Zaozhan, Sun Haitao, Xu Chaoliang, Liu Xiangbing, Tao Jun. Construction and Analysis of Irradiation Damage Prediction Model for Autonomous Reactor Pressure Vessel[J]. Nuclear Power Engineering, 2022, 43(S1): 55-59. doi: 10.13832/j.jnpe.2022.S1.0055
Citation: Guo Yanhui, Sun Zaozhan, Sun Haitao, Xu Chaoliang, Liu Xiangbing, Tao Jun. Construction and Analysis of Irradiation Damage Prediction Model for Autonomous Reactor Pressure Vessel[J]. Nuclear Power Engineering, 2022, 43(S1): 55-59. doi: 10.13832/j.jnpe.2022.S1.0055

Construction and Analysis of Irradiation Damage Prediction Model for Autonomous Reactor Pressure Vessel

doi: 10.13832/j.jnpe.2022.S1.0055
  • Received Date: 2022-01-18
  • Rev Recd Date: 2022-04-21
  • Publish Date: 2022-06-15
  • The problem of irradiation embrittlement of reactor pressure vessel (RPV) is the key to restrict the safe service of RPV, and the building of irradiation damage prediction model is an effective method to predict irradiation embrittlement damage. In this paper, the building mechanisms and methods of typical irradiation damage models such as parameterized prediction model, structured prediction model and artificial neural network prediction model are studied, and the advantages and disadvantages of different prediction models are compared. The results show that the building technology of prediction model based on irradiation mechanism can better reflect the physical mechanism of irradiation embrittlement. Based on this, the construction technology route of RPV independent prediction model is proposed.

     

  • loading
  • [1]
    MATHEW J, PARFITT D, WILFORD K, et al. Reactor pressure vessel embrittlement: insights from neural network modelling[J]. Journal of Nuclear Materials, 2018, 502: 311-322. doi: 10.1016/j.jnucmat.2018.02.027
    [2]
    ODETTE G R, LUCAS G E. Embrittlement of nuclear reactor pressure vessels[J]. JOM, 2001, 53(7): 18-22. doi: 10.1007/s11837-001-0081-0
    [3]
    乔建生,尹世忠,杨文. 反应堆压力容器材料辐照脆化预测模型研究[J]. 核科学与工程,2012, 32(2): 143-149. doi: 10.3969/j.issn.0258-0918.2012.02.008
    [4]
    王荣山,徐超亮,黄平,等. 反应堆压力容器钢的辐照脆化预测模型研究[J]. 原子能科学技术,2014, 48(10): 1862-1866. doi: 10.7538/yzk.2014.48.10.1862
    [5]
    CASTIN N, MALERBA L, CHAOUADI R. Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks[J]. Journal of Nuclear Materials, 2011, 408(1): 30-39. doi: 10.1016/j.jnucmat.2010.10.039
    [6]
    HIRANO T, ASADA S, YAMASHITA N, et al. ASME 2009 pressure vessels and piping conference - Prague, Czech Republic (July 26-30, 2009) volume 1: codes and standards - overview of the revised JEAC4201-2007, Japanese code of surveillance tests for reactor vessel materials[J]. 2009: 387-394.
    [7]
    American Society of Testing Materials. Standard guide for predicting radiation-induced transition temperature shift in reactor vessel materials, E706 (IIF): E900-2002[S]. West Conshohocken: ASTM, 2002.
    [8]
    KIRK M. A Wide-range embrittlement trend curve for Western RPV steels[J].ASTM Special Technical Publication 1547. 2012:20-51.
    [9]
    STOLLER R E. Pressure vessel embrittlement predictions based on a composite model of copper precipitation and point defect clustering: CONF-940657-[R]. Washington: Nuclear Regulatory Commission, 1996: 25-28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (33) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return