Citation: | Zhu Bida, Yu Xinyang, Li Zheng, He Manru. Atomic Simulation of the Interaction between Dislocation Line and Ferrite/Iron Oxide Interface[J]. Nuclear Power Engineering, 2022, 43(S2): 28-32. doi: 10.13832/j.jnpe.2022.S2.0028 |
[1] |
BŁOŃSKI P, KIEJNA A, HAFNER J. Theoretical study of oxygen adsorption at the Fe(110) and (100) surfaces[J]. Surface Science, 2005, 590(1): 88-100. doi: 10.1016/j.susc.2005.06.011
|
[2] |
PARKINSON G S. Iron oxide surfaces[J]. Surface Science Reports, 2016, 71(1): 272-365. doi: 10.1016/j.surfrep.2016.02.001
|
[3] |
CHEN J W, ZHU Y X, HUANG M S, et al. Study on hydrogen-affected interaction between dislocation and grain boundary by MD simulation[J]. Computational Materials Science, 2021, 196: 110562. doi: 10.1016/j.commatsci.2021.110562
|
[4] |
WANG J, HOAGLAND R G, HIRTH J P, et al. Atomistic modeling of the interaction of glide dislocations with “weak” interfaces[J]. Acta Materialia, 2008, 56(19): 5685-5693. doi: 10.1016/j.actamat.2008.07.041
|
[5] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
|
[6] |
BYGGMÄSTAR J, NAGEL M, ALBE K, et al. Analytical interatomic bond-order potential for simulations of oxygen defects in iron[J]. Journal of Physics:Condensed Matter, 2019, 31(21): 215401. doi: 10.1088/1361-648X/ab0931
|
[7] |
PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. doi: 10.1063/1.328693
|
[8] |
MURALI P, RAMAMURTY U. Embrittlement of a bulk metallic glass due to sub-Tg annealing[J]. Acta Materialia, 2005, 53(5): 1467-1478. doi: 10.1016/j.actamat.2004.11.040
|
[9] |
LONG B, DAI Y. Investigation of LBE embrittlement effects on the fracture properties of T91[J]. Journal of Nuclear Materials, 2008, 376(3): 341-345. doi: 10.1016/j.jnucmat.2008.02.022
|