Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Zhu Bida, Yu Xinyang, Li Zheng, He Manru. Atomic Simulation of the Interaction between Dislocation Line and Ferrite/Iron Oxide Interface[J]. Nuclear Power Engineering, 2022, 43(S2): 28-32. doi: 10.13832/j.jnpe.2022.S2.0028
Citation: Zhu Bida, Yu Xinyang, Li Zheng, He Manru. Atomic Simulation of the Interaction between Dislocation Line and Ferrite/Iron Oxide Interface[J]. Nuclear Power Engineering, 2022, 43(S2): 28-32. doi: 10.13832/j.jnpe.2022.S2.0028

Atomic Simulation of the Interaction between Dislocation Line and Ferrite/Iron Oxide Interface

doi: 10.13832/j.jnpe.2022.S2.0028
  • Received Date: 2022-08-18
  • Rev Recd Date: 2022-10-18
  • Publish Date: 2022-12-31
  • Iron oxide is a common surface oxide and internal precipitate of nuclear grade steel containing ferrite phase (such as low alloy steel and ferrite-martensite dual phase steel) under high temperature. A correct understanding of the influence of iron oxide on the micro-deformation mechanism of steel is of great significance to the safety evaluation of advanced nuclear energy systems with higher operating temperatures. In view of this, the effect of temperature on the interaction between edge dislocations in ferrite and ferrite/iron oxide two-phase interface is studied by molecular dynamics method. The calculation results show that in the temperature range of 10~900 K, the edge dislocations can not penetrate the ferrite/oxide interface, but only cause a certain degree of shear deformation between the two phases. With the increase of temperature, the stress concentration near the dislocation-interface contact point increases, and the shear deformation between the interfaces also increases. The above results have certain guiding significance for fracture failure analysis of low alloy steel and ferrite-martensite dual phase steel under high temperature environment.

     

  • loading
  • [1]
    BŁOŃSKI P, KIEJNA A, HAFNER J. Theoretical study of oxygen adsorption at the Fe(110) and (100) surfaces[J]. Surface Science, 2005, 590(1): 88-100. doi: 10.1016/j.susc.2005.06.011
    [2]
    PARKINSON G S. Iron oxide surfaces[J]. Surface Science Reports, 2016, 71(1): 272-365. doi: 10.1016/j.surfrep.2016.02.001
    [3]
    CHEN J W, ZHU Y X, HUANG M S, et al. Study on hydrogen-affected interaction between dislocation and grain boundary by MD simulation[J]. Computational Materials Science, 2021, 196: 110562. doi: 10.1016/j.commatsci.2021.110562
    [4]
    WANG J, HOAGLAND R G, HIRTH J P, et al. Atomistic modeling of the interaction of glide dislocations with “weak” interfaces[J]. Acta Materialia, 2008, 56(19): 5685-5693. doi: 10.1016/j.actamat.2008.07.041
    [5]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
    [6]
    BYGGMÄSTAR J, NAGEL M, ALBE K, et al. Analytical interatomic bond-order potential for simulations of oxygen defects in iron[J]. Journal of Physics:Condensed Matter, 2019, 31(21): 215401. doi: 10.1088/1361-648X/ab0931
    [7]
    PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. doi: 10.1063/1.328693
    [8]
    MURALI P, RAMAMURTY U. Embrittlement of a bulk metallic glass due to sub-Tg annealing[J]. Acta Materialia, 2005, 53(5): 1467-1478. doi: 10.1016/j.actamat.2004.11.040
    [9]
    LONG B, DAI Y. Investigation of LBE embrittlement effects on the fracture properties of T91[J]. Journal of Nuclear Materials, 2008, 376(3): 341-345. doi: 10.1016/j.jnucmat.2008.02.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (464) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return