Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Cui Yinghuan, Xu Jianjun, Xie Tianzhou, Zhou Huihui. Analysis of Heat Conduction Performance of Heat Pipe Based on Thermal Resistance Network Method[J]. Nuclear Power Engineering, 2022, 43(S2): 53-59. doi: 10.13832/j.jnpe.2022.S2.0053
Citation: Cui Yinghuan, Xu Jianjun, Xie Tianzhou, Zhou Huihui. Analysis of Heat Conduction Performance of Heat Pipe Based on Thermal Resistance Network Method[J]. Nuclear Power Engineering, 2022, 43(S2): 53-59. doi: 10.13832/j.jnpe.2022.S2.0053

Analysis of Heat Conduction Performance of Heat Pipe Based on Thermal Resistance Network Method

doi: 10.13832/j.jnpe.2022.S2.0053
  • Received Date: 2022-07-22
  • Rev Recd Date: 2022-10-25
  • Publish Date: 2022-12-31
  • In order to obtain the heat conduction characteristics such as heat pipe temperature and transmission power, a 2D heat pipe thermal resistance network model considering steam cavity heat transfer is established based on the thermal resistance equivalence theory, and the transient and steady-state heat transfer performance of the heat pipe are obtained. The literature and the experimental data of this paper are compared and verified. The maximum relative error of the average temperature in the adiabatic section is 7.6%. The results show that the model has a high accuracy for the experimental data of sodium working medium heat pipe in literature and hydraulic working medium heat pipe in this paper; The temperature uniformity of each axial section of the heat pipe is good, and the radial thermal resistance of the wick is the main factor affecting the thermal-conduction resistance of the heat pipe; The working temperature and transmission power of the heat pipe change with the cold source parameters in the opposite trend, and the heat transfer of the heat pipe is an adaptive dynamic regulation process. Therefore, the thermal resistance network model can be used as a tool for experimental analysis and heat pipe design. At the same time, it can further expand the research scope of working conditions, obtain the influence rules of boundary conditions on heat pipe heat transfer process, and further provide reference for heat pipe design in multiple application scenarios.

     

  • loading
  • [1]
    庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000: 7-8.
    [2]
    SVIRIDENKO I I. Heat exchangers based on low temperature heat pipes for autonomous emergency WWER cooldown systems[J]. Applied Thermal Engineering, 2008, 28(4): 327-334. doi: 10.1016/j.applthermaleng.2006.02.033
    [3]
    MOCHIZUKI M, SINGH R, NGUYEN T, et al. Heat pipe based passive emergency core cooling system for safe shutdown of nuclear power reactor[J]. Applied Thermal Engineering, 2014, 73(1): 699-706. doi: 10.1016/j.applthermaleng.2014.07.004
    [4]
    XIONG Z Q, WANG M L, GU H Y, et al. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool[J]. Annals of Nuclear Energy, 2015, 83: 258-263. doi: 10.1016/j.anucene.2015.03.045
    [5]
    KUSUMA M H, PUTRA N, WIDODO S, et al. Simulation of heat flux effect in straight heat pipe as passive residual heat removal system in light water reactor using RELAP5 mod 3.2[J]. Applied Mechanics and Materials, 2016, 819: 122-126. doi: 10.4028/www.scientific.net/AMM.819.122
    [6]
    孙浩,王成龙,刘逍,等. 水下航行器微型核电源堆芯设计[J]. 原子能科学技术,2018, 52(4): 646-651. doi: 10.7538/yzk.2017.youxian.0465
    [7]
    POSTON D I. The heatpipe-operated Mars exploration reactor (HOMER)[J]. AIP Conference Proceedings, 2001, 552(1): 797-804.
    [8]
    PALAC D, GIBSON M, MASON L, et al. Nuclear systems Kilopower overview: GRC-E-DAA-TN29740[R]. Huntsville: NASA, 2016.
    [9]
    CAO Y D, FAGHRI A. Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input[J]. Numerical Heat Transfer, Part A:Applications, 1991, 18(4): 483-502. doi: 10.1080/10407789008944804
    [10]
    FAGHRI A, HARLEY C. Transient lumped heat pipe analyses[J]. Heat Recovery Systems and CHP, 1994, 14(4): 351-363. doi: 10.1016/0890-4332(94)90039-6
    [11]
    张恒运,葛新石. 两相闭式热虹吸管的集总参数模型研究[J]. 中国科学技术大学学报,1997, 27(2): 174-180.
    [12]
    FERRANDI C, IORIZZO F, MAMELI M, et al. Lumped parameter model of sintered heat pipe: transient numerical analysis and validation[J]. Applied Thermal Engineering, 2013, 50(1): 1280-1290. doi: 10.1016/j.applthermaleng.2012.07.022
    [13]
    FAGHRI A. Heat pipe science and technology[M]. Washington: Taylor and Francis, 1995:682-694.
    [14]
    ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2
    [15]
    沈妍,张红,许辉,等. 碱金属热管传热特性的模拟与试验分析[J]. 太阳能学报,2016, 37(3): 644-650. doi: 10.3969/j.issn.0254-0096.2016.03.018
    [16]
    SAAD S M I. Improved transient network model for wicked heat pipes[D]. Hamilton: McMaster Univ. , 2006.
    [17]
    崔迎欢. 热管导热性能及其影响规律研究[D]. 成都: 中国核动力研究设计院, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (512) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return