Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Shang Xianhe, Zeng Chun, Li Wei. Study on Application of Predictive Maintenance Technology in Nuclear Power Plant[J]. Nuclear Power Engineering, 2022, 43(S2): 60-66. doi: 10.13832/j.jnpe.2022.S2.0060
Citation: Shang Xianhe, Zeng Chun, Li Wei. Study on Application of Predictive Maintenance Technology in Nuclear Power Plant[J]. Nuclear Power Engineering, 2022, 43(S2): 60-66. doi: 10.13832/j.jnpe.2022.S2.0060

Study on Application of Predictive Maintenance Technology in Nuclear Power Plant

doi: 10.13832/j.jnpe.2022.S2.0060
  • Received Date: 2022-07-28
  • Rev Recd Date: 2022-10-10
  • Publish Date: 2022-12-31
  • In order to ensure the safe, stable and economic operation of nuclear power plant units, nuclear power enterprises have gradually introduced predictive maintenance (PdM) based on equipment status. Based on the production practice of a nuclear power plant, this paper discusses the development and application of PdM technology and the challenges faced in the practical application of PdM technology in nuclear power plants, and points out that in consideration of the complexity and particularity of nuclear equipment, when applying PdM technology, different maintenance strategies shall be reasonably selected according to the classification of equipment, the failure mechanism of equipment and the maturity of PdM technology itself; at the same time, attention shall also be paid to the collection and analysis of equipment data information in order to optimize predictive maintenance technology, so as to obtain satisfactory equipment management results.

     

  • loading
  • [1]
    张小丽,陈雪峰,李兵,等. 机械重大装备寿命预测综述[J]. 机械工程学报,2011, 47(11): 100-116.
    [2]
    李葆文,陈雪芹,黄如诔. 2020中国设备管理新趋势报告[J]. 中国设备工程,2020(24): 4-9. doi: 10.3969/j.issn.1671-0711.2020.24.003
    [3]
    王美慧. 预测性维修技术的发展障碍[J]. 航空维修与工程,2020(6): 19-20. doi: 10.3969/j.issn.1672-0989.2020.06.006
    [4]
    王梦云. 2000~2001年全国超高压变压器、电流互感器事故和障碍统计分析[J]. 电力设备,2002(4): 1-6.
    [5]
    俞珊,徐志望,董纪清. 开关电源中电解电容寿命预测分析[J]. 电源学报,2016, 14(6): 87-92,121. doi: 10.13234/j.issn.2095-2805.2016.6.87
    [6]
    孙见君,顾伯勤,魏龙,等. 接触式机械密封寿命预测方法[J]. 化工学报,2008, 59(12): 3095-3100. doi: 10.3321/j.issn:0438-1157.2008.12.021
    [7]
    雷格. 电力设备诊断手册[M]. 北京: 中国电力出版社, 2001.
    [8]
    张金豹, 邹天刚, 王敏, 等. 滚动轴承剩余使用寿命预测综述[J/OL]. 机械科学与技术, (2021-07-13). https://doi.org/10.13433/j.cnki.1003-8728.20200489.
    [9]
    任博,董兴辉,郑凯. 基于相似性的风电机组轴承剩余寿命预测方法[J]. 机械设计与研究,2016, 32(4): 101-104. doi: 10.13952/j.cnki.jofmdr.2016.0150
    [10]
    谷梦瑶,陈友玲,王新龙. 多退化变量下基于实时健康度的相似性寿命预测方法[J]. 计算机集成制造系统,2017, 23(2): 362-372.
    [11]
    李琪,高占宝,李善营,等. 变工况条件下基于相似性的剩余使用寿命预测方法[J]. 北京航空航天大学学报,2016, 42(6): 1236-1243. doi: 10.13700/j.bh.1001-5965.2015.0396
    [12]
    沈红,马丽萍. 核电厂设备状态监测及应用[J]. 华东电力,2014, 42(12): 2635-2637.
    [13]
    贾云献,李欣玥,王鹏,等. 考虑多故障模式的新型装备更新保修费用预测[J]. 系统工程与电子技术,2015, 37(8): 1810-1817. doi: 10.3969/j.issn.1001-506X.2015.08.15
    [14]
    孔德萍. 秦山核电厂长期运行工程实践[J]. 核动力工程,2022, 43(S1): 1-6.
    [15]
    谢志敏. 机械系统剩余寿命预测及预防性维修决策研究[J]. 设备管理与维修,2020(12): 71-72. doi: 10.16621/j.cnki.issn1001-0599.2020.06D.36
    [16]
    裴德强,茹善宏,方立宏,等. 核电厂及设备的寿期和剩余寿期预测分析方法的研究[J]. 核科学与工程,2017, 37(1): 117-122. doi: 10.3969/j.issn.0258-0918.2017.01.020
    [17]
    周海川,李建新,张富,等. 预测性维修在现代化设备维护中的应用[J]. 冶金设备,2002(5): 48-51. doi: 10.3969/j.issn.1001-1269.2002.05.017
    [18]
    李上元,韩传伟,谢岱良,等. 压水堆核电厂阀门老化管理方法应用[J]. 科技创新导报,2018, 15(21): 193-197,199. doi: 10.16660/j.cnki.1674-098X.2018.21.193
    [19]
    汪鹏. 数字芯片的故障预测与健康管理(PHM)关键技术研究[D]. 成都: 电子科技大学, 2016.
    [20]
    李政. 基于在线状态监测系统的设备预测性维修[J]. 仪器仪表用户,2020, 27(9): 41-44. doi: 10.3969/j.issn.1671-1041.2020.09.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (196) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return