Citation: | Li Yongwang, He Xueyi, Wang Xinmin, Guo Zhen, Wu Yu, Liu Haitao. Study on Thermal Deformation Behavior and Mechanism of Difficult-to-process Boron-containing Stainless Steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73. doi: 10.13832/j.jnpe.2022.S2.0067 |
[1] |
BENZ J M, TANNER J E, SMARTT H A, et al. Maintaining continuity of knowledge of spent fuel pools: tool survey: PNNL-SA-25663[R]. Washington: Pacific Northwest National Laboratory, 2016.
|
[2] |
李刚,简敏,王美玲,等. 反应堆乏燃料贮运用中子吸收材料的研究进展[J]. 材料导报A:综述篇,2011, 25(7): 110-113,129.
|
[3] |
Electric Power Research Institute. Handbook of neutron absorber materials for spent nuclear fuel transportation and storage applications 2009 edition [R]. EPRI: Palo Alto,CA: 2009.
|
[4] |
YU G. Boron-containing stainless steel for thermal neutron shielding[J]. Journal of Iron and Steel Research, 1989(1): 90.
|
[5] |
TSUBOTA M, OIKAWA M. Boron-bearing stainless steels for thermal neutron shielding[J]. Bulletin of the Iron and Steel Institute of Japan, 2005, 12(10): 25-32.
|
[6] |
TAKEMOTO T, YAMASAKI K, KAWAI Y. Development of boron-containing stainless steel for thermal neutron shielding[J]. Materia Japan, 1996, 35(4): 412-414. doi: 10.2320/materia.35.412
|
[7] |
王春刚,黄秋菊,李云,等. 硅锰系TRIP钢的变形抗力[J]. 钢铁研究学报,2008, 20(11): 51-54. doi: 10.13228/j.boyuan.issn1001-0963.2008.11.012
|
[8] |
王占学. 塑性加工金属学[M]. 北京: 冶金工业出版社, 2006: 101-103.
|
[9] |
GUO C Q, KELLY P M. Modeling of spatial distribution of the eutectic M2B borides in Fe-Cr-B cast irons[J]. Journal of Materials Science, 2004, 39(3): 1109-1111. doi: 10.1023/B:JMSC.0000012956.43917.c1
|
[10] |
李金富,周尧和. 界面动力学对共晶生长过程的影响[J]. 中国科学E辑:工程科学材料科学,2005, 35(5): 449-458.
|
[11] |
SRINIVASA N, PRASAD Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51(1-4): 171-192. doi: 10.1016/0924-0136(94)01602-W
|
[12] |
ZHOU X, WANG M J, FU Y F, et al. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel[J]. Materials Characterization, 2017, 124: 182-191. doi: 10.1016/j.matchar.2017.01.001
|
[13] |
MEDINA S F, HERNANDEZ C A. Modelling of the dynamic recrystallizayion of austenite in low alloy and microalloyed steels[J]. Acta Mater, 1996, 44(1): 165-171.
|
[14] |
PRASAD Y V R K. Author’s reply: dynamic materials model: basis and principles[J]. Metallurgical and Materials Transactions A, 1996, 27(1): 235-236. doi: 10.1007/BF02647765
|
[15] |
PRASAD Y V R K, GEGEL H L, DORAIVELU S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. doi: 10.1007/BF02664902
|
[16] |
MISHRA S, NARASIMHAN K, SAMAJDAR I. Deformation twinning in AISI 316L austenitic stainless steel: role of strain and strain path[J]. Materials Science and Technology, 2007, 23(9): 1118-1126. doi: 10.1179/174328407X213242
|
[17] |
CABRERA E S P. High temperature deformation of 316L stainless steel[J]. Materials Science and Technology, 2001, 17(2): 155-161. doi: 10.1179/026708301101509944
|