Citation: | Ren Quan yao, Pu Zeng ping, Jiao Yongjun, Zheng Meiyin, Chen Ping, Han Yuanji, Liu Menglong, Zhuang Wenhua, Guo Xianglong, Zhang Lefu. Study on Tangential Fretting Wear Behavior of Zirconium Alloy Cladding at High Temperature[J]. Nuclear Power Engineering, 2022, 43(S2): 82-87. doi: 10.13832/j.jnpe.2022.S2.0082 |
[1] |
IAEA. Review of fuel failures in water cooled reactors: Nuclear Energy Series No. NF-T-2.1[R]. Vienna: IAEA, 2010.
|
[2] |
LAZAREVIC S, LU R Y, FAVEDE C, et al. Investigating grid-to-rod fretting wear of nuclear fuel claddings using a unique autoclave fretting rig[J]. Wear, 2018, 412-413: 30-37. doi: 10.1016/j.wear.2018.06.011
|
[3] |
QU J, COOLEY K M, SHAW A H, et al. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation[J]. Wear, 2016, 356-357: 17-22. doi: 10.1016/j.wear.2016.02.020
|
[4] |
JIANG H, QU J, LU R Y, et al. Grid-to-rod flow-induced impact study for PWR fuel in reactor[J]. Progress in Nuclear Energy, 2016, 91: 355-361. doi: 10.1016/j.pnucene.2016.06.003
|
[5] |
LUCADAMO G A, HOWLAND W H, TYMIAK-CARLSON N, et al. Characterization and simulation methods applied to the study of fretting wear in Zircaloy-4[J]. Wear, 2018, 402-403: 11-20. doi: 10.1016/j.wear.2018.01.012
|
[6] |
ZHANG L F, LAI P, LIU Q D, et al. Fretting wear behavior of zirconium alloy in B-Li water at 300℃[J]. Journal of Nuclear Material, 2018, 499: 401-409. doi: 10.1016/j.jnucmat.2017.12.003
|
[7] |
LAI P, ZHANG H, ZHANG L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J]. Wear, 2019, 424-425: 53-61. doi: 10.1016/j.wear.2019.02.001
|
[8] |
KIM H K, LEE Y H, LEE K H. On the geometry of the fuel rod supports concerning a fretting wear failure[J]. Nuclear Engineering and Design, 2008, 238(12): 3321-3330.
|
[9] |
LEE Y H, KIM H K. Effect of spring shapes on the variation of loading conditions and the wear behaviour of the nuclear fuel rod during fretting wear tests[J]. Wear, 2007, 263(1-6): 451-457. doi: 10.1016/j.wear.2006.12.071
|
[10] |
LEE Y H, KIM H K. Evaluation of fretting wear behavior on the simulated supporting structures of a dual-cooled nuclear fuel rod[J]. Materials Science Forum, 2010, 654-656: 2564-2567.
|
[11] |
LEE Y H, KIM H K. Fretting wear behavior of a nuclear fuel rod under a simulated primary coolant condition[J]. Wear, 2013, 301(1-2): 569-574. doi: 10.1016/j.wear.2013.01.067
|
[12] |
LEE Y H, KIM H K, KANG H S, et al. Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration[J]. AIP Conference Proceeding, 2012, 1448(1): 235-241.
|
[13] |
KIM K T, SUH J M. Impact of nuclear fuel assembly design on grid-to-rod fretting wear[J]. Journal of Nuclear Science and Technology, 2009, 46(2): 149-157. doi: 10.1080/18811248.2007.9711516
|
[14] |
HU Z P. Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J]. Progress in Nuclear Energy, 2018, 106: 293-299. doi: 10.1016/j.pnucene.2018.03.015
|
[15] |
HU Z P, THOULESS M D, LU W. Effects of gap size and excitation frequency on the vibrational behavior and wear rate of fuel rods[J]. Nuclear Engineering and Design, 2016, 308: 261-268. doi: 10.1016/j.nucengdes.2016.08.038
|
[16] |
KOVÁCS S, STABEL J, REN M M, et al. Comparative study on rod fretting behavior of different spacer spring geometries[J]. Wear, 2009, 266(1-2): 194-199. doi: 10.1016/j.wear.2008.06.010
|
[17] |
SHIN M K, LEE H A, LEE J J, et al. Optimization of a nuclear fuel spacer grid spring using homology constraints[J]. Nuclear Engineering and Design, 2008, 238(10): 2624-2634. doi: 10.1016/j.nucengdes.2008.04.003
|
[18] |
SONG K N, LEE S B, SHIN M K, et al. New spacer grid to enhance mechanical/structural performance[J]. Journal of Nuclear Science and Technology, 2010, 47(3): 295-300. doi: 10.1080/18811248.2010.9711957
|