Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Yang Licai, Qiu Tian, Yang Zhihai, Yin Qiwei. Study on High-temperature Creep for Lower Head of HPR1000 Reactor Pressure Vessel[J]. Nuclear Power Engineering, 2022, 43(S2): 202-207. doi: 10.13832/j.jnpe.2022.S2.0202
Citation: Yang Licai, Qiu Tian, Yang Zhihai, Yin Qiwei. Study on High-temperature Creep for Lower Head of HPR1000 Reactor Pressure Vessel[J]. Nuclear Power Engineering, 2022, 43(S2): 202-207. doi: 10.13832/j.jnpe.2022.S2.0202

Study on High-temperature Creep for Lower Head of HPR1000 Reactor Pressure Vessel

doi: 10.13832/j.jnpe.2022.S2.0202
  • Received Date: 2022-07-22
  • Rev Recd Date: 2022-10-16
  • Publish Date: 2022-12-31
  • High-temperature creep is main failure mode of HPR1000 RPV lower dome under severe accident. To accurately study high-temperature creep of HPR1000 RPV lower dome made of domestic 16MND5 forging and assure structure integrity of RPV lower dome under severe accident, high-temperature creep of HPR1000 RPV lower dome is studied systematically in this paper by combining numerical simulation and theoretical analysis based on the high-temperature creep test data. Firstly, the constitutive model of RPV lower dome material is established. Adopting ANSYS software, the numerical simulation of the high-temperature creep of the lower dome under the action of high temperature and internal pressure is performed, and creep strain and stress distributions for lower dome are obtained. Furthermore, the high-temperature creep problem of RPV lower dome is theoretically studied for the first time. The research results indicate, high-temperature creep of RPV lower dome mainly occurs in the zone whose temperature is higher than 450℃; Under severe accident, HPR1000 RPV doesn’t fail due to high-temperature creep ; Plasticity failure zone will enlarge with the increase of internal pressure; The theoretical analysis results of steady creep are consistent with the numerical simulation ones, and deeply reveal the layered failure phenomenon of RPV lower dome.

     

  • loading
  • [1]
    姚彦贵,宁冬,武志玮,等. 假想堆芯熔化严重事故下反应堆压力容器完整性的研究进展与建议[J]. 核技术,2013, 36(4): 040615.
    [2]
    DEVOS J, CATHERINE C S, POETTE C, et al. CEA programme to model the failure of the lower head in severe accidents[J]. Nuclear Engineering and Design, 1999, 191(1): 3-15. doi: 10.1016/S0029-5493(99)00049-7
    [3]
    KOUNDY V, DURIN M, NICOLAS L, et al. Simplified modeling of a PWR reactor pressure vessel lower head failure in the case of a severe accident[J]. Nuclear Engineering and Design, 2005, 235(8): 835-843. doi: 10.1016/j.nucengdes.2004.11.012
    [4]
    YAMAGUCHI Y, KATSUYAMA J, NEMOTO Y, et al. Development of failure evaluation method for BWR Lower head in severe accident; high temperature creep test and creep damage model[J]. Mechanical Engineering Journal, 2017, 4(6): 15-00694.
    [5]
    KOUNDY V, HOANG N H. Modelling of PWR lower head failure under severe accident loading using improved shells of revolution theory[J]. Nuclear Engineering and Design, 2008, 238(9): 2400-2410. doi: 10.1016/j.nucengdes.2008.03.006
    [6]
    VILLANUEVA W, TRAN C T, KUDINOV P. Coupled thermo-mechanical creep analysis for boiling water reactor pressure vessel lower head[J]. Nuclear Engineering and Design, 2012, 249: 146-153. doi: 10.1016/j.nucengdes.2011.07.048
    [7]
    KATSUYAMA J, YAMAGUCHI Y, NEMOTO Y, et al. Development of failure evaluation method for BWR Lower head in severe accident; - Creep damage evaluation based on thermal-hydraulics and structural analyses[J]. Mechanical Engineering Journal, 2016, 3(3): 1-12.
    [8]
    MAO J F, ZHU J W, BAO S Y, et al. Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario[J]. International Journal of Pressure Vessels and Piping, 2016, 139-140: 107-116. doi: 10.1016/j.ijpvp.2016.03.009
    [9]
    MAO J F, ZHU J W, BAO S Y, et al. Study on structural failure of RPV with geometric discontinuity under severe accident[J]. Nuclear Engineering and Design, 2016, 307: 354-363. doi: 10.1016/j.nucengdes.2016.07.027
    [10]
    KIM H N, NAMGUNG I. Two-dimensional axisymmetric thermostructural analysis of APR1400 reactor vessel lower head for full-core meltdown accident[J]. Nuclear Technology, 2016, 195(1): 15-28. doi: 10.13182/NT15-17
    [11]
    温爽,李铁萍,李聪新,等. 熔融物堆内滞留条件下压力容器变形[J]. 核技术,2016, 39(10): 100603.
    [12]
    邱天,罗英,张蕊,等. 严重事故下反应堆压力容器下封头高温蠕变变形数值研究[J]. 热加工工艺,2018, 47(8): 56-59,62. doi: 10.14158/j.cnki.1001-3814.2018.08.014
    [13]
    杨立才,罗英,邱天,等. 华龙一号反应堆压力容器材料高温性能试验研究[J]. 科技视界,2020(13): 124-127. doi: 10.19694/j.cnki.issn2095-2457.2020.13.47
    [14]
    ASME锅炉及压力容器委员会材料分委员会. ASME锅炉及压力容器规范Ⅱ卷[M]. 北京: 中国石化出版社, 2011.
    [15]
    YOU L H, OU H, ZHENG Z Y. Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure[J]. Composite Structures, 2007, 78(2): 285-291. doi: 10.1016/j.compstruct.2005.10.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (152) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return