Advance Search
Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Zhang Heng, Lyu Xue, Liu Dong, Wang Guoyin, Hang Qin, Sha Rui, Guo Bin. Nuclear Power AI Applications: Status, Challenges and Opportunities[J]. Nuclear Power Engineering, 2023, 44(1): 1-8. doi: 10.13832/j.jnpe.2023.01.0001
Citation: Zhang Heng, Lyu Xue, Liu Dong, Wang Guoyin, Hang Qin, Sha Rui, Guo Bin. Nuclear Power AI Applications: Status, Challenges and Opportunities[J]. Nuclear Power Engineering, 2023, 44(1): 1-8. doi: 10.13832/j.jnpe.2023.01.0001

Nuclear Power AI Applications: Status, Challenges and Opportunities

doi: 10.13832/j.jnpe.2023.01.0001
  • Received Date: 2022-08-16
  • Rev Recd Date: 2022-10-16
  • Publish Date: 2023-02-15
  • In recent years, artificial intelligence (AI) technology has been widely used in the field of nuclear power to promote nuclear power plants to achieve the goal of improving production efficiency, reducing operating costs and improving operating safety through self diagnosis, self optimization and self adaptation. This paper introduces the AI technology often used in the nuclear power field, summarizes its research status in four typical application scenarios of the nuclear industry, namely, intelligent mine, intelligent design, intelligent manufacturing and intelligent operation and maintenance. Finally, it analyzes the challenges and development trends of the application of AI technology in the nuclear power field from three aspects: data samples, network security, and the explanatory nature of deep learning.

     

  • loading
  • [1]
    BERNARD J A. Applications of artificial intelligence to reactor and plant control[J]. Nuclear Engineering and Design, 1989, 113(2): 219-227. doi: 10.1016/0029-5493(89)90073-3
    [2]
    SUMAN S. Artificial intelligence in nuclear industry: chimera or solution?[J]. Journal of Cleaner Production, 2021, 278: 124022. doi: 10.1016/j.jclepro.2020.124022
    [3]
    LI Y X. Deep reinforcement learning: an overview[DB/OL]. (2018-10-15)[2022-09-08]. https://arxiv.org/abs/1701.07274.
    [4]
    杨思明,单征,丁煜,等. 深度强化学习研究综述[J]. 计算机工程,2021, 47(12): 19-29. doi: 10.19678/j.issn.1000-3428.0061116
    [5]
    中国电子学会. 中国机器人产业发展报告[EB/OL]. (2022-08-23)[2022-09-08]. https://www.sohu.com/a/580740245_121123919.
    [6]
    张明林,刘洋,吴建勇,等. 中国铀矿地质勘查信息化建设现状及“十四五”发展思路[J]. 世界核地质科学,2021, 38(3): 287-294. doi: 10.3969/j.issn.1672-0636.2021.03.001
    [7]
    伊广林. 人工智能在地质勘探中的应用[J]. 测井技术,1984(5): 6-13. doi: 10.16489/j.issn.1004-1338.1984.05.002
    [8]
    陈玉民,李国清,何吉平,等. 山东黄金数字矿山建设实践[J]. 中国矿业,2011, 20(3): 10-14. doi: 10.3969/j.issn.1004-4051.2011.03.003
    [9]
    CONG T L, SU G H, QIU S Z, et al. Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work[J]. Progress in Nuclear Energy, 2013, 62: 54-71. doi: 10.1016/j.pnucene.2012.09.003
    [10]
    YUAN P, DENG J, PAN L M, et al. Air-water two-phase flow regime and transition criteria in vertical upward narrow rectangular channels[J]. Progress in Nuclear Energy, 2021, 136: 103750. doi: 10.1016/j.pnucene.2021.103750
    [11]
    ZHAO B T, SU Y X. Artificial neural network-based modeling of pressure drop coefficient for cyclone separators[J]. Chemical Engineering Research and Design, 2010, 88(5-6): 606-613. doi: 10.1016/j.cherd.2009.11.010
    [12]
    SERRA P L S, MASOTTI P H F, ROCHA M S, et al. Two-phase flow void fraction estimation based on bubble image segmentation using Randomized Hough Transform with Neural Network (RHTN)[J]. Progress in Nuclear Energy, 2020, 118: 103133. doi: 10.1016/j.pnucene.2019.103133
    [13]
    JIANG B T, LIU Y N. A brief review of computational intelligence techniques for critical heat flux prediction[C]//2018 26th International Conference on Nuclear Engineering. London: American Society of Mechanical Engineers, 2018: V06BT08A050.
    [14]
    WEI H M, SU G H, TIAN W X, et al. Study on the onset of nucleate boiling in narrow annular channel by genetic neural network[J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 596-599. doi: 10.1016/j.icheatmasstransfer.2009.11.017
    [15]
    ZHOU L W, GARG D, QIU Y, et al. Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120351. doi: 10.1016/j.ijheatmasstransfer.2020.120351
    [16]
    CECILIA MARTÍN-DEL-CAMPO A,MIGUEL-NGEL PALOMERA-PÉREZ B,JUAN-LUIS FRANOIS A. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization[J]. Annals of Nuclear Energy, 2009, 36(10): 1553-1559. doi: 10.1016/j.anucene.2009.07.013
    [17]
    SAFARZADEH O, ZOLFAGHARI A, ZANGIAN M, et al. Pattern optimization of PWR reactor using hybrid parallel Artificial Bee Colony[J]. Annals of Nuclear Energy, 2014, 63: 295-301. doi: 10.1016/j.anucene.2013.08.011
    [18]
    LIN C, HUNG S C. Automatic multi-cycle reload design of pressurized water reactor using particle swarm optimization algorithm and local search[J]. Annals of Nuclear Energy, 2013, 59: 255-260. doi: 10.1016/j.anucene.2013.04.013
    [19]
    DE LIMA A M M, SCHIRRU R, DA SILVA F C, et al. A nuclear reactor core fuel reload optimization using artificial ant colony connective networks[J]. Annals of Nuclear Energy, 2008, 35(9): 1606-1612. doi: 10.1016/j.anucene.2008.03.002
    [20]
    AKBARI R, ABBASI M, FAGHIHI F, et al. A novel multi-objective optimization method, imperialist competitive algorithm, for fuel loading pattern of nuclear reactors[J]. Progress in Nuclear Energy, 2018, 108: 391-397. doi: 10.1016/j.pnucene.2018.06.016
    [21]
    PAZIRANDEH A, TAYEFI S. Optimizing the fuel management in a VVER-1000 reactor using an artificial neural network[J]. Annals of Nuclear Energy, 2012, 42: 112-118. doi: 10.1016/j.anucene.2011.12.010
    [22]
    雷铠灰,曹良志,万承辉,等. 基于深度卷积神经网络的堆芯换料方案性能评价研究[J]. 原子能科学技术,2021, 55(2): 279-285. doi: 10.7538/yzk.2020.youxian.0111
    [23]
    KUMAR A, TSVETKOV P V. A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis[J]. Annals of Nuclear Energy, 2015, 85: 27-35. doi: 10.1016/j.anucene.2015.04.028
    [24]
    韦子豪,王端,王东东,等. 神经网络-遗传复合算法在压水堆堆芯换料设计中的应用[J]. 原子能科学技术,2020, 54(5): 825-834. doi: 10.7538/yzk.2019.youxian.0788
    [25]
    刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8. doi: 10.13832/j.jnpe.2022.02.0001
    [26]
    大众日报. 核电装备智能制造又添利器[EB/OL]. (2020-12-17)[2022-09-08]. http://paper.dzwww.com/dzrb/content/20201217/Articel17003MT.htm.
    [27]
    中国原子能科学研究院. 原子能院智能装备和机器人研发团队成功中标中科院强辐射巡测机器人采购项目[EB/OL]. (2019-12-03)[2022-09-08]. http://www.ciae.ac.cn/newsContent.jsp?RID=2998.
    [28]
    FRENCH R, MARIN-REYES H, KAPELLMANN-ZAFRA G, et al. Development of an intelligent robotic additive manufacturing cell for the nuclear industry[C]//International Conference on Applied Human Factors and Ergonomics. Washington: Springer, 2019: 3-13.
    [29]
    CHEN J, PATTON R J. Robust model-based fault diagnosis for dynamic systems[M]. Germany: Springer Science & Business Media, 2012.
    [30]
    NABESHIMA K, SUZUDO T, SUZUKI K, et al. Real-time nuclear power plant monitoring with neural network[J]. Journal of Nuclear Science and Technology, 1998, 35(2): 93-100. doi: 10.1080/18811248.1998.9733829
    [31]
    LIU Y K, XIE C L, PENG M J, et al. Improvement of fault diagnosis efficiency in nuclear power plants using hybrid intelligence approach[J]. Progress in Nuclear Energy, 2014, 76: 122-136. doi: 10.1016/j.pnucene.2014.05.001
    [32]
    AGARWAL V, ALAMANIOTIS M, TSOUKALAS L H. Predictive based monitoring of nuclear plant component degradation using support vector regression: NL/CON-14-32980[R]. Idaho Falls, United States: Idaho National Lab. , 2015.
    [33]
    LIU J, SERAOUI R, VITELLI V, et al. Nuclear power plant components condition monitoring by probabilistic support vector machine[J]. Annals of Nuclear Energy, 2013, 56: 23-33. doi: 10.1016/j.anucene.2013.01.005
    [34]
    陈涵瀛. 核电站热工水力系统工况预测与诊断方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [35]
    MO K, LEE S J, SEONG P H. A dynamic neural network aggregation model for transient diagnosis in nuclear power plants[J]. Progress in Nuclear Energy, 2007, 49(3): 262-272. doi: 10.1016/j.pnucene.2007.01.002
    [36]
    BARTAL Y, LIN J, UHRIG R E. Nuclear power plant transient diagnostics using artificial neural networks that allow "don't-know" classifications[J]. Nuclear Technology, 1995, 110(3): 436-449. doi: 10.13182/NT95-A35112
    [37]
    LI X, FU X M, XIONG F R, et al. Deep learning-based unsupervised representation clustering methodology for automatic nuclear reactor operating transient identification[J]. Knowledge-Based Systems, 2020, 204: 106178. doi: 10.1016/j.knosys.2020.106178
    [38]
    赵琛,沈杰,李思颖. 水下核电机器人应用现状与技术发展分析[J]. 自动化技术与应用,2019, 38(11): 94-98. doi: 10.3969/j.issn.1003-7241.2019.11.022
    [39]
    田冰. 喷涂机器人在核电维修领域的应用分析[J]. 现代工业经济和信息化,2021, 11(10): 142-143,148. doi: 10.16525/j.cnki.14-1362/n.2021.10.054
    [40]
    国家原子能机构. 中广核成功研制核电站蒸汽发生器爬墙机器人[EB/OL]. (2017-05-24)[2022-09-08]. http://www.caea.gov.cn/n6760338/n6760342/c6829999/content.html.
    [41]
    许勇,蔡云泽,宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报,2022, 56(3): 267-278.
    [42]
    刘桐,顾小清. 走向可解释性:打开教育中人工智能的“黑盒”[J]. 中国电化教育,2022(5): 82-90. doi: 10.3969/j.issn.1006-9860.2022.05.012
    [43]
    SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[DB/OL]. (2013-12-21)[2022-09-08]. https://arxiv.org/abs/1312.6199v4.
    [44]
    ALCORN M A, LI Q, GONG Z T, et al. Strike (with) a pose: neural networks are easily fooled by strange poses of familiar objects[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4845-4854.
    [45]
    李明慧,江沛佩,王骞,等. 针对深度学习模型的对抗性攻击与防御[J]. 计算机研究与发展,2021, 58(5): 909-926. doi: 10.7544/issn1000-1239.2021.20200920
    [46]
    陈磊,李雅静. 人工智能系统安全综述[J]. 信息通信技术与政策,2021, 47(8): 56-63. doi: 10.12267/j.issn.2096-5931.2021.08.009
    [47]
    EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning visual classification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1625-1634.
    [48]
    张林超,张欣海. 可信任的人工智能系统及安全框架浅析[J]. 中国电子科学研究院学报,2019, 14(12): 1253-1258. doi: 10.3969/j.issn.1673-5692.2019.12.006
    [49]
    王国胤,傅顺,杨洁,等. 基于多粒度认知的智能计算研究[J]. 计算机学报,2022, 45(6): 1161-1175. doi: 10.11897/SP.J.1016.2022.01161
    [50]
    BAO H N, WANG G Y, LI S, et al. Multi-granularity visual explanations for CNN[J]. Knowledge-Based Systems, 2022, 253: 109474. doi: 10.1016/j.knosys.2022.109474
    [51]
    王国胤,代劲,李昊. 基于多粒度认知计算的生产安全管理与决策[J]. 中国科学基金,2021, 35(5): 752-758. doi: 10.16262/j.cnki.1000-8217.2021.05.012
    [52]
    于洪,何德牛,王国胤,等. 大数据智能决策[J]. 自动化学报,2020, 46(5): 878-896. doi: 10.16383/j.aas.c180861
    [53]
    孔祥维,唐鑫泽,王子明. 人工智能决策可解释性的研究综述[J]. 系统工程理论与实践,2021, 41(2): 524-536. doi: 10.12011/SETP2020-1536
    [54]
    MACHLEV R, HEISTRENE L, PERL M, et al. Explainable artificial intelligence (XAI) techniques for energy and power systems: review, challenges and opportunities[J]. Energy and AI, 2022, 9: 100169. doi: 10.1016/j.egyai.2022.100169
    [55]
    中国信息通信研究院, 京东探索研究院. 可信人工智能白皮书[Z]. 上海: 2021世界人工智能大会-可信AI论坛, 2021-07-09.
    [56]
    何积丰. 安全可信人工智能[J]. 信息安全与通信保密,2019(10): 5-8.
    [57]
    何积丰. 智能制造与安全可信人工智能[J]. 信息安全与通信保密,2020(12): 2-6. doi: 10.3969/j.issn.1009-8054.2020.12.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (8486) PDF downloads(830) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return