Citation: | Liu Zhenshun, Zhang Sheng, Mao Qing, Zheng Xiangyuan. Research on the Closure Effect of Circumferential Through-Wall Cracks in Stainless Steel Piping under Residual Stress[J]. Nuclear Power Engineering, 2023, 44(2): 152-158. doi: 10.13832/j.jnpe.2023.02.0152 |
[1] |
WICHMAN K, LEE S. Development of USNRC standard review plan 3.6. 3 for leak-before-break applications to nuclear power plants[J]. International Journal of Pressure Vessels and Piping, 1990, 43(1-3): 57-65. doi: 10.1016/0308-0161(90)90092-V
|
[2] |
USNRC. Evaluation of potentials for pipe breaks: NUREG-1061[R]. Washington: NRC, 1984.
|
[3] |
NAMBURU S D, CHEBOLU L R, SUBRAMANIAN A K, et al. Influence of weld residual stresses on ductile crack behavior in AISI type 316LN stainless steel weld joint[C]//ASME 2018 Pressure Vessels and Piping Conference. Prague: ASME, 2018.
|
[4] |
COULES H, SMITH D. Upper bound estimates of the contribution of an unknown residual stress field to stress intensity factor[C]//Proceedings of the ASME 2015 Pressure Vessels and Piping Conference. Boston, Massachusetts: ASME, 2015.
|
[5] |
WEBSTER G A, DAVIES C M, NIKBIN K M. Prediction of creep crack growth in the presence of residual stress[J]. Materials at High Temperatures, 2011, 28(3): 165-171. doi: 10.3184/096034011X13119610349738
|
[6] |
GHADIALI N, WILKOWSKI G, RAHMAN S, et al. Deterministic and probabilistic evaluations for uncertainty in pipe fracture parameters in leak-before-break and in-service flaw evaluations: NUREG/CR-6443[R]. Washington, DC, USA: Nuclear Regulatory Commission, 1996.
|
[7] |
NORRIS D. PICEP (pipe crack evaluation computer program): NP-3596-SR[R]. Palo Alto, CA: EPRI, 1987.
|
[8] |
RAHMAN S, BRUST F W, GHADIALI N, et al. Crack-opening-area analyses for circumferential through-wall cracks in pipes - Part I: analytical models[J]. International Journal of Pressure Vessels and Piping, 1998, 75(5): 357-373. doi: 10.1016/S0308-0161(97)00081-1
|
[9] |
MÅNGÅRD D, HANNES D. Estimates of J-integral and COD for circumferential through wall cracks under global bending including the effect of pipe end restraint: 2020-16[R]. Stockholm: Swedish Radiation Safety Authority, 2020.
|
[10] |
RAHMAN S, BRUST F, GHADIALI N, et al. Recent evaluations of crack-opening-area in circumferentially cracked pipes: NUREG/CP-0155[R]. Washington, DC: US Nuclear Regulatory Commission, 1997.
|
[11] |
MIRZAEE-SISAN A, WU G. Residual stress in pipeline girth welds-A review of recent data and modelling[J]. International Journal of Pressure Vessels and Piping, 2019, 169: 142-152. doi: 10.1016/j.ijpvp.2018.12.004
|
[12] |
SCOTT P, OLSON R, BOCKBRADER J, et al. The Battelle integrity of nuclear piping (BINP) program final report: appendices: NUREG/CR-6837[R]. Washington, DC, USA: Nuclear Regulatory Commission, 2005.
|
[13] |
RAHMAN S, GHADIALI N, WILKOWSKI G M, et al. Crack-opening-area analyses for circumferential through-wall cracks in pipes—Part III: off-center cracks, restraint of bending, thickness transition and weld residual stresses[J]. International Journal of Pressure Vessels and Piping, 1998, 75(5): 397-415. doi: 10.1016/S0308-0161(97)00083-5
|
[14] |
MACUROVA K, TICHY R, STRNADEL B. Modification of leak before break criterion with focus on the residual stress[C]//Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington: ASME, 2010.
|
[15] |
SHIM D J, KURTH E, BRUST F, et al. Crack-opening displacement and leak-rate calculations for full structural weld overlays[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Prague: ASME, 2009.
|
[16] |
HUANG Y F, WANG X, DUAN X J. Evaluation of crack opening displacement of through-wall circumferential-cracked pipe using direct weight function method[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102595. doi: 10.1016/j.tafmec.2020.102595
|
[17] |
SCOTT P, OLSON R J, WILKOWSKI G M. Development of technical basis for leak-before-break evaluation procedures[M]. Columbus: NRC, 2002: 21-36.
|
[18] |
KICIAK A, GLINKA G, BURNS D J. Calculation of stress intensity factors and crack opening displacements for cracks subjected to complex stress fields[J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 2003, 125(3): 260-266. doi: 10.1115/1.1593080
|
[19] |
ANDERSON T L, GLINKA G. A closed-form method for integrating weight functions for part-through cracks subject to Mode I loading[J]. Engineering Fracture Mechanics, 2006, 73(15): 2153-2165. doi: 10.1016/j.engfracmech.2006.04.027
|
[20] |
FAN J L, DONG D K, CHEN L, et al. Weight function method for computations of crack face displacements and stress intensity factors of center cracks[J]. Frattura ed Integrità Strutturale, 2015, 9(33): 463-470.
|
[21] |
LEWIS T, WANG X. The T-stress solutions for through-wall circumferential cracks in cylinders subjected to general loading conditions[J]. Engineering Fracture Mechanics, 2008, 75(10): 3206-3225. doi: 10.1016/j.engfracmech.2007.12.001
|
[22] |
EPRI. Evaluation of flaws in austenitic steel piping, Technical basis document for ASME IWB-3640 analysis procedure, prepared by Section XI Task Group for Piping Flaw Evaluation: NP-4690-SR[R]. Palo Alto: Electric Power Research Institute, 1986.
|
[23] |
HIBBITT K, AND SORENSEN. ABAQUS users guide and theoretical manual [M]. Pawtucket: RI, 2010: 10-60.
|