Advance Search
Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Qin Shuai, Li Yunzhao, He Qingming, Bai Jiahe, Dong Wenchang, Cao Liangzhi, Wu Hongchun. Assembly-Homogenized Calculation based on NECP-MCX and Its Application in HPR1000[J]. Nuclear Power Engineering, 2023, 44(3): 21-27. doi: 10.13832/j.jnpe.2023.03.0021
Citation: Qin Shuai, Li Yunzhao, He Qingming, Bai Jiahe, Dong Wenchang, Cao Liangzhi, Wu Hongchun. Assembly-Homogenized Calculation based on NECP-MCX and Its Application in HPR1000[J]. Nuclear Power Engineering, 2023, 44(3): 21-27. doi: 10.13832/j.jnpe.2023.03.0021

Assembly-Homogenized Calculation based on NECP-MCX and Its Application in HPR1000

doi: 10.13832/j.jnpe.2023.03.0021
  • Received Date: 2022-07-26
  • Rev Recd Date: 2022-09-23
  • Publish Date: 2023-06-15
  • The assembly code based on the Monte Carlo method can handle problems with complicated geometry and avoid the resonance self-shielding calculation in the deterministic assembly code. However, the Monte Carlo assembly code has certain difficulties when generating diffusion coefficient and assembly discontinuous factors. Therefore, the capability for the generation of assembly-homogenized few-group constants is developed based on the continuous-energy Monte Carlo particle transport code NECP-MCX. The cumulative migration area method, which treats the anisotropy of neutron explicitly, is adopted to generate the diffusion coefficient; the fundamental mode approximation is used to consider the effect of neutron leakage on the neutron spectrum; the approach named as the mesh-surface tally is proposed to calculate the corrected assembly discontinuous factors. The mesh-surface tally approach is verified through VERA 2D assembly problems and the NECP-MCX is adopted to simulate the physics start-up test of the home-developed HPR1000 reactor. The results show that the biases of critical boron concentrations, the isothermal temperature coefficients, and the control rod bank worth values satisfy the limited value when compared to the design report. The NECP-MCX has the ability to generate reliable assembly-homogenized few-group constants of which accuracy satisfies the requirement of engineering calculation, laying a solid foundation for the further application of NECP-MCX in next-generation reactors.

     

  • loading
  • [1]
    TOHJOH M, WATANABE M, YAMAMOTO A. Application of continuous-energy Monte Carlo code as a cross-section generator of BWR core calculations[J]. Annals of Nuclear Energy, 2005, 32(8): 857-875. doi: 10.1016/j.anucene.2005.01.002
    [2]
    FRIDMAN E, LEPPÄNEN J. On the use of the Serpent Monte Carlo code for few-group cross section generation[J]. Annals of Nuclear Energy, 2011, 38(6): 1399-1405. doi: 10.1016/j.anucene.2011.01.032
    [3]
    PARK H J, SHIM H J, JOO H G, et al. Generation of few-group diffusion theory constants by Monte Carlo code McCARD[J]. Nuclear Science and Engineering, 2012, 172(1): 66-77. doi: 10.13182/NSE11-22
    [4]
    李满仓. 连续能量蒙特卡罗方法组件均匀化研究[D]. 北京: 清华大学, 2012.
    [5]
    吴高晨. 基于RMC的连续能量蒙特卡罗均匀化与群常数产生研究[D]. 北京: 清华大学, 2018.
    [6]
    杜夏楠,吴宏春,郑友琦. 蒙特卡罗方法在快堆组件参数计算中的应用[J]. 核动力工程,2014, 35(S2): 67-70.
    [7]
    KORD S. SMITH Nodal diffusion methods and lattice physics data in LWR analyses: Understanding numerous subtle details[J]. Progress in Nuclear Energy, 2017, 101: 360-369.
    [8]
    郑琪,沈炜,贺清明,等. 基于NECP-MCX的蒙特卡罗-确定论耦合及权窗网格粗化方法研究[J]. 核动力工程,2021, 42(2): 202-207.
    [9]
    LIU Z Y, SMITH K, FORGET B, et al. Cumulative migration method for computing rigorous diffusion coefficients and transport cross sections from Monte Carlo[J]. Annals of Nuclear Energy, 2018, 112: 507-516. doi: 10.1016/j.anucene.2017.10.039
    [10]
    REDMOND E L. Multigroup cross section generation via Monte Carlo methods[D]. Cambridge: Massachusetts Institute of Technology, 1997.
    [11]
    DAWN W C, ORTENSI J, DEHART M D, et al. Comparison of generation of higher-order neutron scattering cross sections[R]. Idaho Falls: Idaho National Laboratory, 2020.
    [12]
    LEPPÄNEN J, PUSA M, FRIDMAN E. Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code[J]. Annals of Nuclear Energy, 2016, 96: 126-136. doi: 10.1016/j.anucene.2016.06.007
    [13]
    STAMM’LER R J, ABBATE M J. Methods of steady-state reactor physics in nuclear design[M]. London: Academic Press, 1983: 151-152.
    [14]
    田超,郑友琦,李云召,等. 压水堆各向异性散射的输运修正方法研究[J]. 原子能科学技术,2017, 51(9): 1599-1605.
    [15]
    LIN C S, YANG W S. An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis[J]. Nuclear Engineering and Technology, 2020, 52(12): 2733-2742. doi: 10.1016/j.net.2020.05.029
    [16]
    SMITH K S. Assembly homogenization techniques for light water reactor analysis[J]. Progress in Nuclear Energy, 1986, 17(3): 303-335. doi: 10.1016/0149-1970(86)90035-1
    [17]
    GODFREY A T. VERA core physics benchmark progression problem specifications, revision 4[R]. Oka Ridge: Oka Ridge National Laboratory, 2014.
    [18]
    万承辉,李云召,郑友琦,等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程,2021, 42(5): 15-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (253) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return