Citation: | Yan Jianguo, Zheng Shumin, Guo Pengcheng, Zhao Li, Wang Shuai, Liu Kun, Zhu Xutao. Research on Prediction of Subcooled Flow Boiling CHF for Spiral Flow Based on Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 65-73. doi: 10.13832/j.jnpe.2023.03.0065 |
[1] |
DOBRAN F. Fusion energy conversion in magnetically confined plasma reactors[J]. Progress in Nuclear Energy, 2012, 60: 89-116. doi: 10.1016/j.pnucene.2012.05.008
|
[2] |
FANG X D, YUAN Y L, XU A Y, et al. Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water[J]. Fusion Engineering and Design, 2017, 122: 52-63. doi: 10.1016/j.fusengdes.2017.09.008
|
[3] |
颜建国,郭鹏程,马嘉琦,等. 高热流条件下过冷沸腾流动阻力特性试验研究[J]. 化工学报,2019, 70(11): 4257-4267.
|
[4] |
HATA K, SHIRAI Y, MASUZAKI S. Heat transfer and critical heat flux of subcooled water flow boiling in a HORIZONTAL circular tube[J]. Experimental Thermal and Fluid Science, 2013, 44: 844-857. doi: 10.1016/j.expthermflusci.2012.10.001
|
[5] |
YAN J G, BI Q C, CAI L Z, et al. Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes[J]. Experimental Thermal and Fluid Science, 2015, 68: 11-21. doi: 10.1016/j.expthermflusci.2015.04.003
|
[6] |
BOURNONVILLE Y, GRANDOTTO M, PASCAL-RIBOT S, et al. Numerical simulation of swirl-tube cooling concept, application to the ITER project[J]. Fusion Engineering and Design, 2009, 84(2-6): 501-504. doi: 10.1016/j.fusengdes.2008.11.028
|
[7] |
HATA K, MASUZAKI S. Subcooled boiling heat transfer for turbulent flow of water in a short vertical tube[J]. Journal of Heat Transfer, 2009, 132(1): 011501.
|
[8] |
YAGOV V V. Heat transfer and crisis in swirl flow boiling[J]. Experimental Thermal and Fluid Science, 2005, 29(7): 871-883. doi: 10.1016/j.expthermflusci.2005.03.013
|
[9] |
DEDOV A V, KOMOV A T, VARAVA A N, et al. Hydrodynamics and heat transfer in swirl flow under conditions of one-side heating. Part 1: Pressure drop and single-phase heat transfer[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 4123-4131. doi: 10.1016/j.ijheatmasstransfer.2010.05.034
|
[10] |
DEDOV A V, KOMOV A T, VARAVA A N, et al. Hydrodynamics and heat transfer in swirl flow under conditions of one-side heating. Part 2: Boiling heat transfer. Critical heat fluxes[J]. International Journal of Heat and Mass Transfer, 2010, 53(21-22): 4966-4975. doi: 10.1016/j.ijheatmasstransfer.2010.05.035
|
[11] |
YAN J G, BI Q C, ZHU G, et al. Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 606-619. doi: 10.1016/j.ijheatmasstransfer.2015.12.024
|
[12] |
刘斌,袁博,赵建福,等. 微重力流动沸腾临界热流密度预测经验关联式[J]. 工程热物理学报,2020, 41(10): 2479-2483.
|
[13] |
钱虹,江诚,潘岳凯,等. 基于时间序列神经网络的蒸汽发生器传热管泄漏程度诊断研究[J]. 核动力工程,2020, 41(2): 160-167. doi: 10.13832/j.jnpe.2020.02.0160
|
[14] |
LIANG X, XIE Y Q, DAY R, et al. A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120743. doi: 10.1016/j.ijheatmasstransfer.2020.120743
|
[15] |
PARK H M, LEE J H, KIM K D. Wall temperature prediction at critical heat flux using a machine learning model[J]. Annals of Nuclear Energy, 2020, 141: 107334. doi: 10.1016/j.anucene.2020.107334
|
[16] |
QIU Y, GARG D, KIM S M, et al. Machine learning algorithms to predict flow boiling pressure drop in mini/micro-channels based on universal consolidated data[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121607. doi: 10.1016/j.ijheatmasstransfer.2021.121607
|
[17] |
马栋梁,周涛,黄彦平. 基于机器学习的超临界水传热恶化判定研究[J]. 核动力工程,2021, 42(4): 91-95. doi: 10.13832/j.jnpe.2021.04.0091
|
[18] |
GAMBILL W R, BUNDY R D, WANSBROUGH R W. Heat transfer, burnout, and pressure drop for water in swirl flow through tubes with internal twisted tapes: ORNL-2911[R]. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1960.
|
[19] |
TONG W, BERGLES A E, JENSEN M K. Critical heat flux and pressure drop of subcooled flow boiling in small-diameter tubes with twisted-tape inserts[J]. Journal of Enhanced Heat Transfer, 1996, 3(2): 95-108. doi: 10.1615/JEnhHeatTransf.v3.i2.30
|
[20] |
HATA K, MASUZAKI S. Heat transfer and critical heat flux of subcooled water flow boiling in a SUS304-tube with twisted-tape insert[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(1): 012001. doi: 10.1115/1.4003609
|
[21] |
ARAKI M, SATO K, SUZUKI S, et al. Critical-heat-flux experiment on the screw tube under one-sided-heating conditions[J]. Fusion Technology, 1996, 29(4): 519-528. doi: 10.13182/FST96-A30695
|
[22] |
BOSCARY J, FABRE J, SCHLOSSER J. Critical heat flux of water subcooled flow in one-side heated swirl tubes[J]. International Journal of Heat and Mass Transfer, 1999, 42(2): 287-301. doi: 10.1016/S0017-9310(98)00108-2
|
[23] |
DRIZIUS M R M, SKEMA R K, SLANCIAUSKAS A A. Boiling crisis in swirled flow of water in pipes[J]. Heat Transfer - Soviet Research, 1978, 10(4): 1-7.
|
[24] |
SCHLOSSER J, CHAPPUIS P, DESCHAMPS P, et al. Thermal-hydraulic tests on net divertor targets using swirl tubes[Z]//Proceedings of the 1991 Winter Meeting of the American Nuclear Society. San Francisco: American Nuclear Society, 1991.
|
[25] |
KOSKI J A. Thermal-hydraulic considerations in the surface contouring of a limited head for Tore Supra[Z]//Proceedings of the 7th Proc Nuclear Thermal Hydraulics, ANS Winter Meeting. 1991.
|
[26] |
NARIAI H, INASAKA F, FUJISAKI W, et al. Critical heat flux of subcooled flow boiling in tubes with internal twisted tape[Z]//Proceedings of the 7th Proc, Nuclear Thermal Hydraulics, ANS Winter Meeting. 1991.
|
[27] |
ARMENT T W, TODREAS N E, BERGLES A E. Critical heat flux and pressure drop for tubes containing multiple short-length twisted-tape swirl promoters[J]. Nuclear Engineering and Design, 2013, 257: 1-11. doi: 10.1016/j.nucengdes.2012.12.008
|
[28] |
颜建国,郑书闽,郭鹏程,等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报,2021, 72(9): 4649-4657.
|
[29] |
关鹏,焦玉勇,段新胜. 基于RBF神经网络的土体导热系数非线性预测[J]. 太阳能学报,2021, 42(3): 171-178. doi: 10.19912/j.0254-0096.tynxb.2018-1118
|
[30] |
崔江,唐军祥,张卓然,等. 基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J]. 中国电机工程学报,2018, 38(8): 2458-2466. doi: 10.13334/J.0258-8013.PCSEE.162334
|
[31] |
TONG L S. A phenomenological study of critical heat flux: ASME Paper 75-1-HT-68[R]. New York, USA: ASME, 1975.
|