Advance Search
Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 112-120. doi: 10.13832/j.jnpe.2023.03.0112
Citation: Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 112-120. doi: 10.13832/j.jnpe.2023.03.0112

Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning

doi: 10.13832/j.jnpe.2023.03.0112
  • Received Date: 2022-06-06
  • Rev Recd Date: 2022-09-15
  • Publish Date: 2023-06-15
  • Accurate flow regime identification of the boiling flow is of great significance for using closure correlations in thermal-hydraulic system codes. The flow regime identification is achieved by the unsupervised machine learning (ML) approach, and the current work integrates the data-driven ML model with the two-phase-flow domain knowledge. Two requirements are established to determine whether the feed-in data type is appropriate or not: ①the information captured by the unsupervised ML should be regime-relevant features for distinguishing flow regimes;②the cluster criterion for a flow regime should cover all the possible feed-in features of the regime. Feed-in data types generated by the conductivity probe are examined; among them, only the bubble chord length Cumulative Distribution Function (CDF) fulfills the two requirements. With the feed-in data of chord length CDF, the two-dimensional local flow regimes are identified and analyzed for a boiling dataset conducted in an internally heated vertical annulus. The results show that the higher-rank regimes appear at the channel’s center leaning toward the inner-heated wall. The global flow regime map is obtained with the local regimes, and a new flow regime transition criterion between the bubbly and slug flow is developed as the void fraction equals 0.14.

     

  • loading
  • [1]
    U. S. NRC. RELAP5/MOD3.3 code manual Vol. 1: Code structure, system models, and solution methods. Nuclear safety analysis division Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission: RELAP5/MOD3.3 Code Manual: NUREG/CR-5535[R]. Rockville: Information Systems Laboratories, Inc. , 2001.
    [2]
    TRACE. TRACE V5.0 Theory Manual[Z]. U. S.: Nuclear Regulatory Commission, 2010.
    [3]
    SEKOGUCHI K, INOUE K, IMASAKI T. Void signal analysis and gas-liquid two-phase flow regime determination by a statistical pattern recognition method: fluids engineering[J]. JSME International Journal, 1987, 30(266): 1266-1273. doi: 10.1299/jsme1987.30.1266
    [4]
    MI Y, ISHII M, TSOUKALAS L H. Flow regime identification methodology with neural networks and two-phase flow models[J]. Nuclear Engineering and Design, 2001, 204(1-3): 87-100. doi: 10.1016/S0029-5493(00)00325-3
    [5]
    孙斌,周云龙. 基于支持向量机和小波包能量特征的气液两相流流型识别方法[J]. 中国电机工程学报,2005, 25(17): 93-99. doi: 10.3321/j.issn:0258-8013.2005.17.019
    [6]
    孙斌,周云龙,赵鹏,等. 基于奇异值分解和最小二乘支持向量机的气-液两相流流型识别方法[J]. 核动力工程,2007, 28(6): 62-66. doi: 10.3969/j.issn.0258-0926.2007.06.015
    [7]
    乔守旭,钟文义,谭思超,等. 基于PCA-GA-SVM的竖直下降两相流流型预测[J]. 核动力工程,2022, 43(3): 85-93. doi: 10.13832/j.jnpe.2022.03.0085
    [8]
    OOI Z J, ZHU L X, BOTTINI J L, et al. Identification of flow regimes in boiling flows in a vertical annulus channel with machine learning techniques[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122439. doi: 10.1016/j.ijheatmasstransfer.2021.122439
    [9]
    BOTTINI J L, ZHU L X, OOI Z J, et al. Experimental study of boiling flow in a vertical heated annulus with local two-phase measurements and visualization[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119712.
    [10]
    LEE J Y, ISHII M, KIM N S. Instantaneous and objective flow regime identification method for the vertical upward and downward co-current two-phase flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14): 3442-3459. doi: 10.1016/j.ijheatmasstransfer.2007.10.037
    [11]
    KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480. doi: 10.1109/5.58325
    [12]
    CONG T L, SU G H, QIU S Z, et al. Applications of ANNs in flow and heat transfer problems in nuclear engineering: A review work[J]. Progress in Nuclear Energy, 2013, 62: 54-71. doi: 10.1016/j.pnucene.2012.09.003
    [13]
    JULIÁ J E, LIU Y, PARANJAPE S, et al. Upward vertical two-phase flow local flow regime identification using neural network techniques[J]. Nuclear Engineering and Design, 2008, 238(1): 156-169. doi: 10.1016/j.nucengdes.2007.05.005
    [14]
    HERNÁNDEZ L, JULIÁ J E, CHIVA S, et al. Fast classification of two-phase flow regimes based on conductivity signals and artificial neural networks[J]. Measurement Science and Technology, 2006, 17(6): 1511-1521. doi: 10.1088/0957-0233/17/6/032
    [15]
    MISHIMA K, ISHII M. Flow regime transition criteria for upward two-phase flow in vertical tubes[J]. International Journal of Heat and Mass Transfer, 1984, 27(5): 723-737. doi: 10.1016/0017-9310(84)90142-X
    [16]
    KELESSIDIS V C, DUKLER A E. Modeling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli[J]. International Journal of Multiphase Flow, 1989, 15(2): 173-191. doi: 10.1016/0301-9322(89)90069-4
    [17]
    DAS G, DAS P K, PUROHIT N K, et al. Flow pattern transition during gas liquid upflow through vertical concentric annuli—Part I: experimental investigations[J]. Journal of Fluids Engineering, 1999, 121(4): 895-901. doi: 10.1115/1.2823552
    [18]
    WU B, FIROUZI M, MITCHELL T, et al. A critical review of flow maps for gas-liquid flows in vertical pipes and annuli[J]. Chemical Engineering Journal, 2017, 326: 350-377. doi: 10.1016/j.cej.2017.05.135
    [19]
    OZAR B, JEONG J J, DIXIT A, et al. Flow structure of gas–liquid two-phase flow in an annulus[J]. Chemical Engineering Science, 2008, 63(15): 3998-4011. doi: 10.1016/j.ces.2008.04.042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1781) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return