Advance Search
Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Zhao Chen, Zhao Wenbo, Zhang Hongbo, Wang Bo, Chen Zhang, Peng Xingjie, Gong Zhaohu, Zeng Wei, Li Qing. Research on Direct Transport Calculation Method Based on Numerical Nuclear Reactor Physics Code SHARK[J]. Nuclear Power Engineering, 2023, 44(4): 33-40. doi: 10.13832/j.jnpe.2023.04.0033
Citation: Zhao Chen, Zhao Wenbo, Zhang Hongbo, Wang Bo, Chen Zhang, Peng Xingjie, Gong Zhaohu, Zeng Wei, Li Qing. Research on Direct Transport Calculation Method Based on Numerical Nuclear Reactor Physics Code SHARK[J]. Nuclear Power Engineering, 2023, 44(4): 33-40. doi: 10.13832/j.jnpe.2023.04.0033

Research on Direct Transport Calculation Method Based on Numerical Nuclear Reactor Physics Code SHARK

doi: 10.13832/j.jnpe.2023.04.0033
  • Received Date: 2022-10-08
  • Rev Recd Date: 2022-12-05
  • Publish Date: 2023-08-15
  • In order to establish the next-generation reactor physics calculation method based on the numerical nuclear reactor technology and realize high-fidelity modeling, high-resolution and high-precision calculation, the research of direct transport method was conducted based on the numerical nuclear reactor physics code SHARK, and 2D/1D and quasi-3D MOC methods were built and compared. Based on the large-scale parallel acceleration technology of domain decomposition and coarse mesh finite difference (CMFD), the whole reactor direct transport calculation was realized for the pin-type and plate-type cores. Compared with Monte-Carlo reference results, eigenvalue differences were less than 100pcm (1pcm=10–5) and maximum pin/plate powers were less than 3%. Numerical results showed the good accuracy of SHARK in the direct transport calculation, and can be apllied in multi-application scenarios of pin-type and plate-type cores.

     

  • loading
  • [1]
    SZILARD R, ZHANG H B, KOTHE D, et al. The consortium for advanced simulation of light water reactors: INL/CON-11-22917[R]. Idaho Falls: Idaho National Laboratory, 2011.
    [2]
    邓力,史敦福,李刚. 数值反应堆多物理耦合关键技术[J]. 计算物理,2016, 33(6): 631-638. doi: 10.3969/j.issn.1001-246X.2016.06.002
    [3]
    WEBER D P, SOFU T, PFEIFFER P A, et al. The numerical nuclear reactor for high fidelity integrated simulation of Neutronic, thermal-hydraulic and Thermo mechanical phenomena-project overview[C]//PHYSOR 2004-The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments. Chicago: American Nuclear Society, 2004.
    [4]
    KOTHE D B. CASL: the consortium for advanced simulation of light water reactors[R]. Washington: A DOE Energy Innovation Hub, 2010.
    [5]
    梁亮. 基于特征线方法的2D/1D及2D/3D耦合中子输运计算方法[D]. 西安: 西安交通大学, 2017.
    [6]
    赵晨. 二维/一维耦合特征线方法的改进及在数值反应堆物理计算中的应用[D]. 西安: 西安交通大学, 2019.
    [7]
    KELLEY B W, LARSEN E W. 2D/1D approximations to the 3D neutron transport equation. I: Theory[C]//2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Sun Valley: U. S. Department of Energy, 2013.
    [8]
    JUNG Y S. Development of practical numerical nuclear reactor for high fidelity core analysis[D]. Korea: Seoul National University, 2013.
    [9]
    HURSIN M. Full core, heterogeneous, time dependent neutron transport calculation with the 3D code DeCART[D]. Berkeley: University of California, Berkeley, 2010.
    [10]
    CHOI S, CHOE J, HOANG K, et al. Recent development status of neutron transport code STREAM[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju, Korea, 2019.
    [11]
    CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [12]
    ZHANG T F, XIAO W, YIN H, et al. VITAS: A multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [13]
    ZHAO C, LIU Z Y, LIANG L, et al. Improved leakage splitting method for the 2D/1D transport calculation[J]. Progress in Nuclear Energy, 2018, 105: 202-210. doi: 10.1016/j.pnucene.2018.01.007
    [14]
    ZHU A, JARRETT M, XU Y L, et al. An optimally diffusive coarse mesh finite difference method to accelerate neutron transport calculations[J]. Annals of Nuclear Energy, 2016, 95: 116-124. doi: 10.1016/j.anucene.2016.05.004
    [15]
    M.A. Smith, E.E. Lewis, Byung-Chan Na. Benchmark on deterministic 3-D MOX fuel assembly transport calculations without spatial homogenization[J]. Progress in Nuclear Energy, 2006, 48: 383−393.
    [16]
    TAKEDA T, IKEDA H. 3-D neutron transport benchmarks[J]. Journal of Nuclear Science and Technology, 1991, 28(7): 656-669. doi: 10.1080/18811248.1991.9731408
    [17]
    WANG K, LI Z G, SHE D, et al. RMC – A monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [18]
    IWASAKI J, TSURUTA H, ICHIKAWA H. Neutronics calculation of upgraded JRR-3: JAERI-M 85-062[R]. Naka: Japan Atomic Energy Research Institute, 1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (1149) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return