Citation: | Chen Zehan, Chen Xingwei, Dai Ye, Zou Yang. Study on the Effect of Inclination Angle on the Natural Convection of Molten Salt in Heat Pipe Cooled Molten Salt Reactor Core[J]. Nuclear Power Engineering, 2023, 44(4): 79-87. doi: 10.13832/j.jnpe.2023.04.0079 |
[1] |
WANG X, ZHANG Q, ZHUANG K, et al. Neutron physics of the liquid‐fuel heat‐pipe reactor concept with molten salt fuel—Static calculations[J]. International Journal of Energy Research, 2019, 43(14): 7852-7865.
|
[2] |
LIU M H, ZHANG D L, WANG C L, et al. Experimental study on heat transfer performance between fluoride salt and heat pipes in the new conceptual passive residual heat removal system of molten salt reactor[J]. Nuclear Engineering and Design, 2018, 339: 215-224. doi: 10.1016/j.nucengdes.2018.09.015
|
[3] |
PETRUCCI M, FAGHRI A. Multiple evaporator and condenser loop thermosyphon system for passive cooling of liquid-fuel molten salt nuclear reactors[J]. Nuclear Engineering and Design, 2020, 370: 110936. doi: 10.1016/j.nucengdes.2020.110936
|
[4] |
于世和,孙强,赵恒,等. 火星熔盐堆堆芯概念设计[J]. 核技术,2020, 43(5): 67-72. doi: 10.11889/j.0253-3219.2020.hjs.43.050603
|
[5] |
CUI D Y, DAI Y, CAI X Z, et al. Preconceptual nuclear design of a 50 kWth heat pipe cooled micro molten salt reactor (micro-MSR)[J]. Progress in Nuclear Energy, 2021, 134: 103670. doi: 10.1016/j.pnucene.2021.103670
|
[6] |
胡光,崔德阳,卢林远,等. 1MWth火星表面热管熔盐堆堆芯初步中子学设计[J]. 核技术,2021, 44(12): 97-106. doi: 10.11889/j.0253-3219.2021.hjs.44.120603
|
[7] |
余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
|
[8] |
李华琪,江新标,陈立新,等. 空间堆热管输热能力分析[J]. 原子能科学技术,2015, 49(1): 89-95. doi: 10.7538/yzk.2015.49.01.0089
|
[9] |
TENG W F, WANG X Y, ZHU Y Z. Experimental investigations on start-up and thermal performance of sodium heat pipe under swing conditions[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119505. doi: 10.1016/j.ijheatmasstransfer.2020.119505
|
[10] |
JANZ G J, GARDNER G L, KREBS U, et al. Molten salts: volume 4, part 1, fluorides and mixtures electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1974, 3(1): 1-115. doi: 10.1063/1.3253134
|
[11] |
CHEN X W, ZOU Y, CHEN Z H, et al. Effect of core configuration on natural convection and heat transfer in heat pipe cooled micro-MSRs[J]. Nuclear Engineering and Design, 2022, 395: 111839. doi: 10.1016/j.nucengdes.2022.111839
|
[12] |
PEROVIĆ B D, KLIMENTA J L, TASIĆ D S, et al. Modeling the effect of the inclination angle on natural convection from a flat plate: the case of a photovoltaic module[J]. Thermal Science, 2017, 21(2): 925-938. doi: 10.2298/TSCI140821059P
|
[13] |
NIAZI S, BENI M N. Numerical study of the effect of a nanofluid with nanoparticles of nonuniform size on natural convection in an inclined enclosure[J]. Nanoscience and Technology:An International Journal, 2017, 8(4): 261-308. doi: 10.1615/NanoSciTechnolIntJ.v8.i4.10
|
[14] |
LU S H, ZHU J Q, GAO D Y, et al. Lattice Boltzmann simulation for natural convection of supercritical CO2 in an inclined square cavity[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, 30(7): 3635-3652. doi: 10.1108/HFF-08-2019-0641
|
[15] |
ELBAKHSHAWANGY H F. Effect of tilting angle on natural convection heat transfer from a cylinder suspended in stagnant water[J]. Arab Journal of Nuclear Sciences and Applications, 2020, 53(2): 56-67. doi: 10.21608/ajnsa.2020.15243.1244
|
[16] |
ROY K, DAS B, DUTTA S. Natural convective heat transfer from an inclined isothermal fin array[C]// Advances in Mechanical Engineering. Singapore: Select Proceedings of ICRIDME 2018. Springer Singapore, 2020: 1055-1068.
|
[17] |
ASHJAEE M, YOUSEFI T. Experimental study of free convection heat transfer from horizontal isothermal cylinders arranged in vertical and inclined arrays[J]. Heat Transfer Engineering, 2007, 28(5): 460-471. doi: 10.1080/01457630601165822
|
[18] |
贾笃雨. 高温熔盐在圆管表面自然对流换热的数值研究[D]. 天津: 河北工业大学, 2016.
|
[19] |
REYMOND O, MURRAY D B, O’DONOVAN T S. Natural convection heat transfer from two horizontal cylinders[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1702-1709. doi: 10.1016/j.expthermflusci.2008.06.005
|
[20] |
WANG C L, QIN H, ZHANG D L, et al. Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors[J]. Nuclear Science and Techniques, 2020, 31(7): 87-95. doi: 10.1007/s41365-020-00780-z
|
[21] |
YODER G L JR, HEATHERLY D W, WILLIAMS D F, et al. Liquid fluoride salt experimentation using a small natural circulation cell: ORNL/TM-2014/56[R]. Oak Ridge: Oak Ridge National Lab, 2014.
|
[22] |
杨世铭, 陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社, 2006: 267-269.
|
[23] |
YODER G L JR. Examination of liquid fluoride salt heat transfer[C]//Proceedings of the ICAPP 2014. Charlotte, 2014: 6-9
|
[24] |
TSUBOUCHI T, MASUDA H. Heat transfer by natural convection from horizontal cylinders at low Rayleigh numbers[R]. Tohoku: Tohoku University, 1967, 19: 205-219
|
[25] |
CHURCHILL S W, CHU H H S. Correlating equations for laminar and turbulent free convection from a horizontal cylinder[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1049-1053. doi: 10.1016/0017-9310(75)90222-7
|