Advance Search
Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Bai Tian, Wang Fengning, Liu Yan, Wei Huatong, Cui Xiwei, Guo Lin, Liu Hai, Liu Li. Research on Ultrasonic Technology of Accurate Measurement of Main Feedwater Flow in Nuclear Power Plant[J]. Nuclear Power Engineering, 2023, 44(4): 185-191. doi: 10.13832/j.jnpe.2023.04.0185
Citation: Bai Tian, Wang Fengning, Liu Yan, Wei Huatong, Cui Xiwei, Guo Lin, Liu Hai, Liu Li. Research on Ultrasonic Technology of Accurate Measurement of Main Feedwater Flow in Nuclear Power Plant[J]. Nuclear Power Engineering, 2023, 44(4): 185-191. doi: 10.13832/j.jnpe.2023.04.0185

Research on Ultrasonic Technology of Accurate Measurement of Main Feedwater Flow in Nuclear Power Plant

doi: 10.13832/j.jnpe.2023.04.0185
  • Received Date: 2022-08-25
  • Rev Recd Date: 2023-03-23
  • Publish Date: 2023-08-15
  • A high-precision ultrasonic flow meter with a design measurement uncertainty of 0.3% has been investigated and developed for the measurement of the main feedwater flow in the secondary loop. This flowmeter could be used to realize the small power enhancement of PWR nuclear power units. The influences of flow measurement under high temperature and high pressure were sequentially analyzed through the method of uncertainty decomposition. The influence of the flow condition variation caused by high temperature on the measurement can be partially verified by the real flow calibration of the calibration coefficient under normal temperature and pressure and medium temperature. The change of the tube structure size could be obtained by finite element simulation and measurement on a static experimental equipment which could create a high temperature and high pressure environment. The error introduced by the flow integral algorithm could be obtained by CFD simulation and verified by real flow calibration. The results show that each component can be quantified and traced back by using the flow standard device under the existing domestic conditions. Therefore, the measurement uncertainty of the main feedwater flowmeter developed in this thesis can finally achieve the design target.

     

  • loading
  • [1]
    王旭,张赫男. 超声波技术在核电厂给水流量测量中的应用[J]. 机电工程,2012, 29(9): 1055-1060.
    [2]
    居法立,陈远伦,陶佳林. 核电厂超声波流量计在主给水流量测量中的应用[J]. 中国核电,2014, 7(2): 118-123,112.
    [3]
    向美琼,朱加良,刘艳阳,等. 华龙一号小幅功率提升研究[J]. 核动力工程,2021, 42(3): 115-120.
    [4]
    余俊辉,关仲华,霍雨佳,等. 参数测量不确定度优化用于核电厂小幅功率提升的研究[J]. 核动力工程,2019, 40(3): 170-174.
    [5]
    徐彦庆. 超声波流量计的实用测量技术[J]. 工业计量,2002(S1): 36-39. doi: 10.13228/j.boyuan.issn1002-1183.2002.s1.032
    [6]
    American Society of Mechanical Engineers. Hydraulic turbines and pump-turbines performance test codes: ASME PTC 18-2011[S]. American Society of Mechanical Engineers, 2011: 43-52
    [7]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水轮机、蓄能泵和水泵水轮机流量的测量 超声传播时间法: GB/Z 35717-2017[S]. 北京: 中国标准出版社, 2017: 12-29.
    [8]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 封闭管道中流体流量的测量 渡越时间法液体超声流量计: GB/T 35138-2017[S]. 北京: 中国标准出版社, 2017: 12-29.
    [9]
    胡鹤鸣,王池,孟涛. 多声路超声流量计积分方法及其准确度分析[J]. 仪器仪表学报,2010, 31(6): 1218-1223.
    [10]
    国家质量监督检验检疫总局. 非实流法校准DN1000-DN15000液体超声流量计校准规范: JJF 1358-2012[S]. 北京: 中国标准出版社, 2012: 9-3.
    [11]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 封闭管道中流体流量的测量 气体超声流量计 第1部分: 贸易交接和分输计量用气体超声流量计: GB/T 34041.1-2017[S]. 北京: 中国标准出版社, 2017: 9-7.
    [12]
    WAGNER W, COOPER J R, DITTMANN A, et al. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(1): 150-184. doi: 10.1115/1.483186
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (113) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return