Advance Search
Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Li Xiangdong, Jiang Hesong, Wang Xueyuan, Xu Xuejin, He Xiaochun. Research on Automatic Calibration Algorithm of Reactor Fuel Rods[J]. Nuclear Power Engineering, 2023, 44(4): 203-208. doi: 10.13832/j.jnpe.2023.04.0203
Citation: Li Xiangdong, Jiang Hesong, Wang Xueyuan, Xu Xuejin, He Xiaochun. Research on Automatic Calibration Algorithm of Reactor Fuel Rods[J]. Nuclear Power Engineering, 2023, 44(4): 203-208. doi: 10.13832/j.jnpe.2023.04.0203

Research on Automatic Calibration Algorithm of Reactor Fuel Rods

doi: 10.13832/j.jnpe.2023.04.0203
  • Received Date: 2022-09-02
  • Rev Recd Date: 2023-04-29
  • Publish Date: 2023-08-15
  • Since the nuclear reactors need frequent replacement of fuel rods, it is necessary to determine the type and installation position of the core fuel rods accurately to ensure the safe operation of the reactor. Herein, the global and local virtual two-dimensional coordinate mapping models have been established in terms of the distribution relationship of fuel rod installation positions. The local sequence pictures of each viewpoint are taken to identify the central position of the fuel rods in the local pictures, and the local virtual two-dimensional coordinate mapping model is calibrated. Then, the Euclidean distance between the central position of the fuel rods and the position in the calibrated local mapping model is measured to realize type refactor, and the core panoramic mosaic is further obtained to assist calibration. The simulation results show that the algorithm can effectively detect the type and installation position of fuel rods, the recognition rate is higher than 98%, the accuracy rate reaches 100%, and the panoramic mosaic results are stable and reliable. It has great application potential in the calibration of core fuel rods.

     

  • loading
  • [1]
    余红星,李文杰,柴晓明,等. 数字反应堆发展与挑战[J]. 核动力工程,2020, 41(4): 1-7. doi: 10.13832/j.jnpe.2020.04.0001
    [2]
    李开宇,蔡琦,才鑫馨,等. 数字孪生技术在浮动核电站设计阶段中的应用研究[J]. 核动力工程,2022, 43(1): 197-201.
    [3]
    高祖瑛,张作义,董玉杰. 核动力系统模拟技术的研究[J]. 核动力工程,1998, 19(2): 178-183.
    [4]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
    [5]
    KE X, ZHANG X L, ZHANG T W, et al. SAR ship detection based on an improved faster R-CNN using deformable convolution[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 3565-3568.
    [6]
    LOWE D G. Distinctive image features from Scale-Invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [7]
    BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006: 404-417.
    [8]
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2564-2571.
    [9]
    吕禾丰,陆华才. 基于YOLOv5算法的交通标志识别技术研究[J]. 电子测量与仪器学报,2021, 35(10): 137-144.
    [10]
    ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231.
    [11]
    MAHMUD M N, OSMAN M K, ISMAIL A P, et al. Road image segmentation using unmanned aerial vehicle images and DeepLab V3+ semantic segmentation model[C]//Proceedings of the 11th IEEE International Conference on Control System, Computing and Engineering. Penang, Malaysia: IEEE, 2021: 315-320.
    [12]
    JI Q B, WANG L J, HOU C B, et al. SAR and optical image matching eased on phase congruency and template matching[C]//Proceedings of the 8th International Conference on Dependable Systems and Their Applications. Yinchuan, China: IEEE, 2021: 315-320.
    [13]
    LIAO F R, CHEN Y, CHEN Y P, et al. SAR image registration based on optimized RANSAC algorithm with mixed feature extraction[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, USA: IEEE, 2020: 1153-1156.
    [14]
    ZARAGOZA J, CHIN T J, BROWN M S, et al. As-projective-as-possible image stitching with moving DLT[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2339-2346.
    [15]
    POURFARD M, HOSSEINIAN T, SAEIDI R, et al. KAZE-SAR: SAR image registration using KAZE detector and modified SURF descriptor for tackling speckle noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5207612.
    [16]
    LI Z F, CHEN C. An improved adaptive threshold BRISK feature matching algorithm based on SURF[C]//Proceedings of 2018 Chinese Automation Congress. Xi’an, China: IEEE, 2018: 2928-2932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (113) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return