Advance Search
Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Gu Zhixing, Yu Hongxing, Huang Daishun, Yan Mingyu, Shen Yaou, Feng Wenpei, Gong Zhengyu. Development and Verification of 3D Code for Steam Generator Tube Rupture Accident of LBE-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(4): 226-233. doi: 10.13832/j.jnpe.2023.04.0226
Citation: Gu Zhixing, Yu Hongxing, Huang Daishun, Yan Mingyu, Shen Yaou, Feng Wenpei, Gong Zhengyu. Development and Verification of 3D Code for Steam Generator Tube Rupture Accident of LBE-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(4): 226-233. doi: 10.13832/j.jnpe.2023.04.0226

Development and Verification of 3D Code for Steam Generator Tube Rupture Accident of LBE-cooled Reactor

doi: 10.13832/j.jnpe.2023.04.0226
  • Received Date: 2023-04-12
  • Rev Recd Date: 2023-05-30
  • Publish Date: 2023-08-15
  • Steam Generator Tube Rupture (SGTR) accident is one of the significant safety problems that must be considered in the design of Lead-Bismuth-Eutectic (LBE) cooled reactor. With respect to the SGTR in LBE-cooled reactor, and to cope with the challenges of 3D propagation of pressure waves and 3D migration of water steam under the complex geometric structures, the three-dimensional numerical model and algorithm of the interaction between LBE and water were studied based on the Euler hydrodynamic theory of multiphase flow, and a special code was developed. The code was verified by means of experimental comparison and code-to-code comparison, and the verification results were in good agreement. It is demonstrated that the numerical theories and models used in this paper are suitable for describing the "LBE-water" interaction during SGTR accidents in LBE-cooled reactors. And the 3D code developed in this paper has important potential application values in coping with the 3D evolution processes of SGTR accidents in LBE-cooled reactors under the complex geometric structures, including the pressure wave propagation and steam migration. The research achievements in this paper are expected to provide strong supports for the SGTR accident analyses of LBE-cooled reactors in China.

     

  • loading
  • [1]
    ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [2]
    DIERCKS D R, SHACK W J, MUSCARA J. Overview of steam generator tube degradation and integrity issues[J]. Nuclear Engineering and Design, 1999, 194(1): 19-30. doi: 10.1016/S0029-5493(99)00167-3
    [3]
    CINOTTI L, SMITH C F, SEKIMOTO H, et al. Lead-cooled system design and challenges in the frame of Generation IV International Forum[J]. Journal of Nuclear Materials, 2011, 415(3): 245-253. doi: 10.1016/j.jnucmat.2011.04.042
    [4]
    WANG G. A review of research progress in heat exchanger tube rupture accident of heavy liquid metal cooled reactors[J]. Annals of Nuclear Energy, 2017, 109: 1-8. doi: 10.1016/j.anucene.2017.05.034
    [5]
    SMITH C F, CINOTTI L, SEKIMOTO H. Lead-cooled fast reactor (LFR) ongoing R&D and key issues: LLNL-CONF-414709[R]. Livermore, CA: Lawrence Livermore National Lab. , 2009.
    [6]
    DINH T N. Multiphase flow phenomena of steam generator tube rupture in a lead-cooled reactor system: a scoping analysis[C]//Proceedings of ICAPP. Nice. 2007.
    [7]
    SIBAMOTO Y, KUKITA Y, NAKAMURA H. Visualization and measurement of subcooled water jet injection into high-temperature melt by using high-frame-rate neutron radiography[J]. Nuclear Technology, 2002, 139(3): 205-220. doi: 10.13182/NT02-A3314
    [8]
    SIBAMOTO Y, KUKITA Y, NAKAMURA H. Small-scale experiment on subcooled water jet injection into molten alloy by using fluid temperature-phase coupled measurement and visualization[J]. Journal of Nuclear Science and Technology, 2007, 44(8): 1059-1069. doi: 10.1080/18811248.2007.9711347
    [9]
    CIAMPICHETTI A, AGOSTINI P, BENAMATI G, et al. LBE–water interaction in sub-critical reactors: First experimental and modelling results[J]. Journal of Nuclear Materials, 2008, 376(3): 418-423. doi: 10.1016/j.jnucmat.2008.02.039
    [10]
    PESETTI A, DEL NEVO A, FORGIONE N. Experimental investigation and SIMMER-III code modelling of LBE–water interaction in LIFUS5/Mod2 facility[J]. Nuclear Engineering and Design, 2015, 290: 119-126. doi: 10.1016/j.nucengdes.2014.11.016
    [11]
    CIAMPICHETTI A, BERNARDI D, CADIOU T, et al. LBE–water interaction in LIFUS 5 facility under different operating conditions[J]. Journal of Nuclear Materials, 2011, 415(3): 449-459. doi: 10.1016/j.jnucmat.2011.04.051
    [12]
    SA R, TAKAHASHI M, MORIYAMA K. Study on fragmentation behavior of liquid lead alloy droplet in water[J]. Progress in Nuclear Energy, 2011, 53(7): 895-901. doi: 10.1016/j.pnucene.2011.05.003
    [13]
    SA R, TAKAHASHI M. Experimental study on thermal interaction of ethanol jets in high temperature fluorinert[J]. Journal of Power and Energy Systems, 2012, 6(2): 314-323. doi: 10.1299/jpes.6.314
    [14]
    黄望哩. 铅基堆SGTR事故下铅铋与水接触碎化行为研究[D]. 合肥: 中国科学技术大学, 2015.
    [15]
    ZHANG C D, SA R Y, ZHOU D N, et al. Effects of gas velocity and break size on steam penetration depth using gas jet into water similarity experiments[J]. Progress in Nuclear Energy, 2017, 98: 38-44. doi: 10.1016/j.pnucene.2017.02.006
    [16]
    WANG S, FLAD M, MASCHEK W, et al. Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling[J]. Progress in Nuclear Energy, 2008, 50(2-3): 363-369.
    [17]
    GU Z X, GANG W, BAI Y Q, et al. Preliminary investigation on the primary heat exchanger lower head rupture accident of forced circulation LBE-cooled fast reactor[J]. Annals of Nuclear Energy, 2015, 81: 84-90. doi: 10.1016/j.anucene.2015.03.018
    [18]
    辜峙钘. 铅基研究实验堆无保护瞬态安全特性分析[D]. 合肥: 中国科学技术大学, 2017.
    [19]
    ZHANG C D, SA R Y, ZHOU D N, et al. Effects of failure location and pressure on the core voiding under SGTR accident in a LBE-cooled fast reactor[J]. International Journal of Heat and Mass Transfer, 2019, 141: 940-948. doi: 10.1016/j.ijheatmasstransfer.2019.06.106
    [20]
    陈家铭. 铅冷快堆中换热器泄漏瞬态事故下气泡迁移行为研究[D]. 合肥: 中国科学技术大学, 2020.
    [21]
    陈家铭,陈红丽. 自然循环铅冷快堆蒸汽发生器泄漏事故下的气泡迁移[J]. 原子能科学技术,2020, 54(12): 2344-2352. doi: 10.7538/yzk.2020.youxian.0004
    [22]
    HUANG X, CHEN B, YING Y, et al. Numerical investigation on LBE-water interaction for heavy liquid metal cooled fast reactors[J]. Nuclear Engineering and Design, 2020, 361: 110567. doi: 10.1016/j.nucengdes.2020.110567
    [23]
    YU Q F, ZHANG Y, WANG C L, et al. Numerical simulation of bubble transport during steam generator tube rupture accident of Lead-cooled Fast Reactor[J]. Annals of Nuclear Energy, 2021, 153: 108066. doi: 10.1016/j.anucene.2020.108066
    [24]
    于启帆,赵亚峰,王成龙,等. 铅基快堆SGTR事故下热工水力模拟及气腔扩散行为研究[J]. 原子能科学技术,2022, 56(10): 2015-2023.
    [25]
    辜峙钘, 余红星, 黄代顺, 等. 铅铋堆蒸汽发生器传热管破裂事故下铅铋-水相互作用程序开发及验证[J/OL]. 原子能科学技术, 2023: 1-10. (2023-04-21)[2023-05-21]. http: //kns.cnki.net/kcms/detail/11.2044.TL.20230421.0944.002.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (114) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return