Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Liu Lixun, Zhang Han, Wu Yingjie, Guo Jiong, Li Fu. Pipelined Parallel JFNK Method and its Application in Neutron k Eigenvalue Problem[J]. Nuclear Power Engineering, 2023, 44(5): 15-22. doi: 10.13832/j.jnpe.2023.05.0015
Citation: Liu Lixun, Zhang Han, Wu Yingjie, Guo Jiong, Li Fu. Pipelined Parallel JFNK Method and its Application in Neutron k Eigenvalue Problem[J]. Nuclear Power Engineering, 2023, 44(5): 15-22. doi: 10.13832/j.jnpe.2023.05.0015

Pipelined Parallel JFNK Method and its Application in Neutron k Eigenvalue Problem

doi: 10.13832/j.jnpe.2023.05.0015
  • Received Date: 2022-11-01
  • Rev Recd Date: 2023-04-04
  • Publish Date: 2023-10-13
  • JFNK (Jacobian-free Newton-Krylov) is an efficient acceleration method for solving nonlinear problems such as neutron k eigenvalue and coupling of multiple physical fields in the reactor, and the generalized minimum residual (GMRES) algorithm is commonly used in Krylov iteration. The parallel JFNK method is a necessary means for solving large-scale problems, and its main problem lies in the low parallel efficiency of Gram-Schmidt (GS) orthogonalization procedure in GMRES, which causes massive collective communications. In this paper, the parallel JFNK method based on the parallel programming model of message passing interface and spatial domain decomposition technology is developed for the three-dimensional neutron k eigenvalue problem. Aiming at the poor parallel scalability of GS orthogonalization procedure, the pipelined method is studied to improve the parallel efficiency of parallel JFNK. Then, the computation time and parallel efficiency of parallel JFNK using classical GS orthogonalization, modified GS orthogonalization and pipelined method are compared. The IAEA-3D three-dimensional diffusion benchmark problem was used for numerical test. The results show that the parallel efficiency of pipelined parallel JFNK is significantly superior to that using classical or modified GS orthogonalization, and the convergence of pipelined parallel JFNK is not affected.

     

  • loading
  • [1]
    KNOLL D A, KEYES D E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2): 357-397. doi: 10.1016/j.jcp.2003.08.010
    [2]
    KELLEY C T. Iterative methods for linear and nonlinear equations[M]. Philadelphia: SIAM, 1995: 95-111.
    [3]
    GILL D F, AZMY Y Y. Newton’s method for solving k-eigenvalue problems in neutron diffusion theory[J]. Nuclear Science and Engineering, 2011, 167(2): 141-153. doi: 10.13182/NSE09-98
    [4]
    GILL D F, AZMY Y Y, WARSA J S, et al. Newton's method for the computation of k-eigenvalues in SN transport applications[J]. Nuclear Science and Engineering, 2011, 168(1): 36-58.
    [5]
    卢佳楠,郭炯,李富. JFNK在高温堆扩散计算中的应用[J]. 强激光与粒子束,2017, 29(3): 036024. doi: 10.11884/HPLPB201729.160333
    [6]
    LIU L X, WU Y J, LIU B K, et al. A modified JFNK method for solving the fundamental eigenmode in k-eigenvalue problem[J]. Annals of Nuclear Energy, 2022, 167: 108823. doi: 10.1016/j.anucene.2021.108823
    [7]
    ZHANG H, GUO J, LU J N, et al. An assessment of coupling algorithms in HTR simulator TINTE[J]. Nuclear Science and Engineering, 2018, 190(3): 287-309. doi: 10.1080/00295639.2018.1442061
    [8]
    ZHANG Y J, CAO L Z, LIU Z Y, et al. Newton-Krylov method with nodal coupling coefficient to solve the coupled neutronics/thermal-hydraulics equations in PWR transient analysis[J]. Annals of Nuclear Energy, 2018, 118: 220-234. doi: 10.1016/j.anucene.2018.04.016
    [9]
    SAAD Y. Iterative methods for sparse linear systems[M]. Philadelphia: SIAM, 1995: 323-356.
    [10]
    GHYSELS P, ASHBY T J, MEERBERGEN K, et al. Hiding global communication latency in the GMRES algorithm on massively parallel machines[J]. SIAM Journal on Scientific Computing, 2013, 35(1): C48-C71. doi: 10.1137/12086563X
    [11]
    郝琛,韩立会,程有莹. 求解CMFD的改进流水线并行GMRES方法[J]. 现代应用物理,2021, 12(1): 010205.
    [12]
    SMITH K S. An analytic nodal method for solving the two-group, multidimensional, static and transient neutron diffusion equations[D]. Massachusetts: Massachusetts Institute of Technology, 1979.
    [13]
    吴文斌,于颖锐,向宏志,等. 基于大规模并行计算的三维多群中子扩散方程有限差分方法[J]. 强激光与粒子束,2017, 29(8): 086001. doi: 10.11884/HPLPB201729.160328
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (108) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return