Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Zhao Jinyi, Song Lei, Zhou Zhiguang. Fragility Analysis of Main Aftershock by Nuclear Power Plant SSC Coupling System Model Considering SSI Effect[J]. Nuclear Power Engineering, 2023, 44(5): 85-94. doi: 10.13832/j.jnpe.2023.05.0085
Citation: Zhao Jinyi, Song Lei, Zhou Zhiguang. Fragility Analysis of Main Aftershock by Nuclear Power Plant SSC Coupling System Model Considering SSI Effect[J]. Nuclear Power Engineering, 2023, 44(5): 85-94. doi: 10.13832/j.jnpe.2023.05.0085

Fragility Analysis of Main Aftershock by Nuclear Power Plant SSC Coupling System Model Considering SSI Effect

doi: 10.13832/j.jnpe.2023.05.0085
  • Received Date: 2022-10-11
  • Rev Recd Date: 2023-05-15
  • Publish Date: 2023-10-13
  • Seismic fragility analysis of NPP systems can reflect the failure probability of coupled structures, systems and components (SSCs) under different earthquake intensities, in which the soil-structure interaction (SSI) and the main aftershock effect are two very important factors. In this paper, the AP1000 NPP SSC coupled system model is established; the typical soft rock foundation is selected as the site condition; the main aftershock records are selected according to the AP1000 design spectrum; and the coupled model is analyzed for seismic fragility considering the SSI effect using the IDA calculation method. It is calculated and analyzed that the damage to the structure and equipment from the main aftershock effect may be greater than the effect of a single mainshock. Considering the SSI effect generally increases the conditional failure probability of SSCs under main aftershocks. From the typical SSC seismic performance results, the failure mode of the coupled system is that the concrete of the shield building cracks first, followed by the yielding of the steam generator piping, and finally the main steam piping enters yielding. Considering SSI effect, the values of high confidence low failure probability (HCLPF) of the three in the limit state between basically intact failure state and general failure state are 0.48g, 0.68g and 0.92g respectively. The research results indicate that the effects of the SSI and the main aftershock should not be neglected in the fragility assessment of nuclear power plants.

     

  • loading
  • [1]
    EPRI. Seismic probabilistic risk assessment implementation guide: EPRI-1002989[R]. Palo Alto: EPRI, 2009.
    [2]
    王晓磊,吕大刚. 核电厂地震概率风险评估研究综述[J]. 土木工程学报,2016, 49(11): 52-68. doi: 10.15951/j.tmgcxb.2016.11.007
    [3]
    YUN C B, SON E J. Floor response spectra with structure-equipment interaction effects by a random vibration approach[J]. KSCE Journal of Civil and Environmental Engineering Research, 1991, 11(1): 37-43.
    [4]
    ZHU L H, YANG Y H, GUO X, et al. Seismic performance levels and fortification objects of structure-equipment coupled system[C]//International Conference on Consumer Electronics, Communications and Networks. Xianning, China: IEEE, 2011: 5203-5206.
    [5]
    DANG Y, XIE P F. Analysis of floor response spectrum influencing factors of isolated structure-equipment coupled system[J]. Journal of Lanzhou University of Technology, 2021, 47(6): 108-114.
    [6]
    HERNRIED A G, SACKMAN J L. Tertiary systems[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(4): 467-479.
    [7]
    LUO L F, JIANG N, BI J H. Analysis of the effects of soil on the seismic energy responses of an equipment-structure system via substructure shaking table testing[J]. Shock and Vibration, 2019, 2019: 4351329.
    [8]
    苏经宇,周锡元,樊水荣,等. 计算楼层上设备地震作用的方法[J]. 地震工程与工程振动,1990, 10(2): 65-72. doi: 10.13197/j.eeev.1990.02.007
    [9]
    孙增寿,陈淮,李杰. 结构-设备复合复合系统振动特性研究[J]. 工业建筑,1997, 27(2): 21-25. doi: 10.13204/j.gyjz1997.02.006
    [10]
    李杰,陈淮,孙增寿. 结构-设备动力相互作用试验研究[J]. 工程力学,2003, 20(1): 157-161,85. doi: 10.3969/j.issn.1000-4750.2003.01.031
    [11]
    ASHIQUZZAMAN M, HONG K J. Simplified model of soil-structure interaction for seismically isolated containment buildings in nuclear power plant[J]. Structures, 2017, 10: 209-218. doi: 10.1016/j.istruc.2016.09.014
    [12]
    李小军,王晓辉,贺秋梅,等. 非基岩核电厂结构地震响应振动台试验研究[J]. 核动力工程,2017, 38(4): 31-35. doi: 10.13832/j.jnpe.2017.04.0031
    [13]
    于晓辉,乔雨蒙,代旷宇,等. 主余震序列作用下非线性单自由度体系的增量损伤分析[J]. 工程力学,2019, 36(3): 121-130.
    [14]
    CHEN W R, ZHANG Y S, WANG D Y. Damage development analysis of the whole nuclear power plant of AP1000 type under strong Main-aftershock sequences[J]. Nuclear Engineering and Design, 2021, 371: 110975. doi: 10.1016/j.nucengdes.2020.110975
    [15]
    SCHULZ T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1547-1557. doi: 10.1016/j.nucengdes.2006.03.049
    [16]
    EPRI. Program on technology innovation: validation of CLASSI and SASSI codes to treat seismic wave incoherence in soil-structure interaction (SSI) analysis of nuclear power plant structures: EPRI-1015111[R]. Palo Alto: EPRI, 2007.
    [17]
    Westinghouse Electric Company LLC. Westinghouse AP1000 design control document: ML11171A500[R]. Rockville, Maryland: United States Nuclear Regulatory Commission, 2011.
    [18]
    LI C H, ZHAI C H, KUNNATH S, et al. Methodology for selection of the most damaging ground motions for nuclear power plant structures[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 345-357. doi: 10.1016/j.soildyn.2018.09.039
    [19]
    PARK Y J, HOFMAYER C H. Technical guidelines for aseismic design of nuclear power plants: BNL-NUREG-52422[R]. Washington: U. S. Nuclear Regulatory Commission, 1994.
    [20]
    路燕,初起宝,徐宇,等. 核动力厂蒸汽发生器模态分析[J]. 核安全,2018, 17(4): 37-43. doi: 10.16432/j.cnki.1672-5360.2018.04.007
    [21]
    COLEMAN J L, BOLISETTI C, WHITTAKER A S. Time-domain soil-structure interaction analysis of nuclear facilities[J]. Nuclear Engineering and Design, 2016, 298: 264-270. doi: 10.1016/j.nucengdes.2015.08.015
    [22]
    EPRI. Seismic fragility application guide: EPRI-1002988[R]. Palo Alto: EPRI, 2002.
    [23]
    EPRI. Seismic fragility applications guide update: EPRI-1019200[R]. Palo Alto: EPRI, 2009.
    [24]
    EPRI. Methodology for developing seismic fragilities: EPRI-103959[R]. Palo Alto: EPRI, 1994.
    [25]
    ZHAI C H, BAO X, ZHENG Z, et al. Impact of aftershocks on a post-mainshock damaged containment structure considering duration[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 129-141. doi: 10.1016/j.soildyn.2018.08.013
    [26]
    DONG D Q, CHEN F, CUI Z S. A physically-based constitutive model for SA508-III steel: modeling and experimental verification[J]. Materials Science and Engineering:A, 2015, 634: 103-115. doi: 10.1016/j.msea.2015.03.036
    [27]
    CHAUDHARI R, INGLE A. Finite element analysis of dissimilar metal weld of SA335 P11 and SA312 TP304 formed by transition grading technique[J]. Materials Today:Proceedings, 2018, 5(2): 7972-7980. doi: 10.1016/j.matpr.2017.11.481
    [28]
    ANDERSEN V M. Seismic probabilistic risk assessment implementation guide: EPRI-3002000709[R]. Palo Alto: EPRI, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (93) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return