Citation: | Zhao Xuebin, Huang Yanping, Zang Jinguang. Research and Development on Thermal Hydraulic and Safety of Supercritical Water-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 223-231. doi: 10.13832/j.jnpe.2023.05.0223 |
[1] |
ZANG J G, YAN X, HUANG S F, et al. A general method for developing friction factor formulas under supercritical conditions and in different geometries[J]. Annals of Nuclear Energy, 2014, 65: 262-271. doi: 10.1016/j.anucene.2013.10.026
|
[2] |
黄彦平, 王俊峰, 刘光旭, 等. 超临界二氧化碳热质传递与热力循环[M]. 北京: 中国原子能出版社, 2019: 93-99.
|
[3] |
JACKSON J D. Some striking features of heat transfer with fluids at pressures and temperatures near the critical point[C]//Proceedings of the International Conference on Energy Conversion and Application. Wuhan: ICECA, 2001: 50-61.
|
[4] |
BAE Y Y, KIM H Y. Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 329-339. doi: 10.1016/j.expthermflusci.2008.10.002
|
[5] |
LIU S H, HUANG Y P, LIU G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. doi: 10.1016/j.ijheatmasstransfer.2016.10.093
|
[6] |
JACKSON J D, HALL W B. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[C]. Washington: Proceedings of the Turbulent Forced Convection in Channels and Bundles, 1979: 613-640.
|
[7] |
WANG H, BI Q C, YANG Z D, et al. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water[J]. Annals of Nuclear Energy, 2015, 80: 416-428. doi: 10.1016/j.anucene.2015.02.029
|
[8] |
WANG H, BI Q C, WANG L C. Heat transfer characteristics of supercritical water in a 2 × 2 rod bundle - numerical simulation and experimental validation[J]. Applied Thermal Engineering, 2016, 100: 730-743. doi: 10.1016/j.applthermaleng.2016.02.083
|
[9] |
臧金光,闫晓,黄善仿,等. 含绕丝2×2棒束内超临界水传热特性数值研究[J]. 核动力工程,2014, 35(2): 33-36.
|
[10] |
魏佳妮,刘晓晶,柴翔,等. 7棒束超临界氟利昂流体流动传热数值分析[J]. 核科学与工程,2019, 39(6): 878-884.
|
[11] |
WU G, WANG H, BI Q C. Experimental investigation of the pressure drop and friction factor of supercritical water in a 2×2 rod bundle[J]. Annals of Nuclear Energy, 2022, 166: 108732. doi: 10.1016/j.anucene.2021.108732
|
[12] |
WANG H, BI Q C, WU G, et al. Experimental investigation on pressure drop of supercritical water in an annular channel[J]. The Journal of Supercritical Fluids, 2018, 131: 47-57. doi: 10.1016/j.supflu.2017.08.014
|
[13] |
黄志刚. 竖直上升圆管内超临界水流动及传热特性研究[D]. 成都: 中国核动力研究设计院, 2011.
|
[14] |
李玉柱, 贺五洲. 工程流体力学[M]. 北京: 清华大学出版社, 2016: 154-187.
|
[15] |
俞冀阳. 反应堆热工水力学[M]. 第三版. 北京: 清华大学出版社, 2018: 125.
|
[16] |
MIKHEEV M A. Fundamentals of heat transfer[M]. Moscow: Gosenergoizdat Publishing House, 1956.
|
[17] |
POPOV V N, BELYAE V M, VALUEVA E P. Heat transfer and hydraulic drag in a turbu of helium in a circular tube at supercritical pressure[J]. High Temperature, 1978, 16: 864-871.
|
[18] |
KIRILLOV P L, YUREV Y S, BOBKOV V P. Handbook of thermohydraulic calculations[M]. Moscow: Energoatomizdat Publishing House, 1990.
|
[19] |
FILONENKO G K. Hydraulic resistance in pipes[J]. Teploenergetika, 1954, 1(4): 40-44.
|
[20] |
臧金光. 棒束通道内超临界水流动及传热特性研究[D]. 成都: 中国核动力研究设计院, 2014.
|
[21] |
XIONG T, YAN X, XIAO Z J, et al. Experimental study on flow instability in parallel channels with supercritical water[J]. Annals of Nuclear Energy, 2012, 48: 60-67. doi: 10.1016/j.anucene.2012.05.018
|
[22] |
WANG W Y, YANG D, LIANG Z Y, et al. Experimental investigation on flow instabilities of ultra-supercritical water in parallel channels[J]. Applied Thermal Engineering, 2019, 147: 819-828. doi: 10.1016/j.applthermaleng.2018.10.107
|
[23] |
臧金光,闫晓,黄彦平. 并联通道内超临界水流动不稳定性的数值模拟研究[J]. 核动力工程,2021, 42(2): 72-76.
|
[24] |
CHATOORGOON V. Static instability in supercritical parallel-channel systems[C]//Proceedings of the 16th International Conference on Nuclear Engineering. Orlando: ASME, 2008: 49-56.
|
[25] |
SU Y L, FENG J, ZHAO H, et al. Theoretical study on the flow instability of supercritical water in the parallel channels[J]. Progress in Nuclear Energy, 2013, 68: 169-176. doi: 10.1016/j.pnucene.2013.06.005
|
[26] |
XIONG T, YAN X, HUANG S F, et al. Modeling and analysis of supercritical flow instability in parallel channels[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 549-557. doi: 10.1016/j.ijheatmasstransfer.2012.08.046
|
[27] |
LIU G X, HUANG Y P, WANG J F, et al. Experiments on the basic behavior of supercritical CO2 natural circulation[J]. Nuclear Engineering and Design, 2016, 300: 376-383. doi: 10.1016/j.nucengdes.2016.01.021
|
[28] |
LIU G X, HUANG Y P, WANG J F, et al. Experimental research and theoretical analysis of flow instability in supercritical carbon dioxide natural circulation loop[J]. Applied Energy, 2017, 205: 813-821. doi: 10.1016/j.apenergy.2017.08.132
|
[29] |
吕发, 黄彦平, 王艳林, 等. 超临界水自然循环不稳定性的实验观察[C]//中国核科学技术进展报告(第三卷)——中国核学会2013年学术年会论文集第3册(核能动力分卷(下)). 北京: 中国原子能出版社, 2013: 198-205.
|
[30] |
YU J Y, CHE S W, LI R, et al. Analysis of Ledinegg flow instability in natural circulation at supercritical pressure[J]. Progress in Nuclear Energy, 2011, 53(6): 775-779. doi: 10.1016/j.pnucene.2011.04.001
|
[31] |
ZHAO M F, ZHANG D X, LV Y F. A general thermal equilibrium discharge flow model[J]. Journal of Energy and Power Engineering, 2016, 10(7): 392-399.
|
[32] |
李伟卿,张东旭,赵民富. 超临界CO2临界流稳态试验研究及模型验证[J]. 原子能科学技术,2022, 56(8): 1593-1598.
|
[33] |
LEE D H, SWINNERTON D. Evaluation of critical flow for supercritical steam-water: EPRINP-3086[R]. California: Electric Power Research Institute, 1983.
|
[34] |
CHEN Y Z, ZHAO M F, YANG C S, et al. Critical flow of water under supercritical pressures[C]//Proceedings of the 14th International Heat Transfer Conference. Washington: ASME, 2010: 319-326.
|
[35] |
CHEN Y Z, YANG C S, ZHANG S M, et al. Experimental study of critical flow of water at supercritical pressure[J]. Frontiers of Energy and Power Engineering in China, 2009, 3(2): 175-180. doi: 10.1007/s11708-009-0029-6
|
[36] |
MUFTUOGLU A, TEYSSEDOU A. Experimental study of abrupt discharge of water at supercritical conditions[J]. Experimental Thermal and Fluid Science, 2014, 55: 12-20. doi: 10.1016/j.expthermflusci.2014.02.009
|
[37] |
黄志刚,李永亮,曾小康,等. 竖直圆管通道内超临界水传热实验及数值模拟研究[J]. 原子能科学技术,2012, 46(7): 799-803.
|
[38] |
HE S, KIM W S, BAE J H. Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(19-20): 4659-4675. doi: 10.1016/j.ijheatmasstransfer.2007.12.028
|
[39] |
张兆顺, 崔桂香, 许春晓, 等. 湍流理论与模拟[M]. 第二版. 北京: 清华大学出版社, 2017: 202.
|
[40] |
杜代全. 超临界水冷堆子通道分析模型研究及程序开发[D]. 成都: 中国核动力研究设计院, 2012.
|
[41] |
刘晓晶,程旭. 超临界水冷堆堆芯子通道稳态热工分析[J]. 核动力工程,2007, 28(5): 18-21,58.
|
[42] |
许志红,杨晓,傅晟威,等. 超临界水冷堆双排燃料组件子通道分析[J]. 核科学与工程,2012, 32(1): 56-62.
|
[43] |
RAO Y F, ONDER E N, PODILA K. Assessment of subchannel code ASSERT-PV for supercritical applications[J]. The Journal of Supercritical Fluids, 2016, 117: 164-171. doi: 10.1016/j.supflu.2016.06.016
|
[44] |
WU P, GOU J L, SHAN J Q, et al. Preliminary safety evaluation for CSR1000 with passive safety system[J]. Annals of Nuclear Energy, 2014, 65: 390-401. doi: 10.1016/j.anucene.2013.11.031
|
[45] |
DANG G J, LI Q, LIU Y, et al. Large-break LOCA analysis of CSR1000[J]. Annals of Nuclear Energy, 2021, 161: 108444. doi: 10.1016/j.anucene.2021.108444
|