Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Sun Dayun, Gao Yang, Zhang Lefu, Han Zhongli, Guo Xianglong. Corrosion Behavior of a Novel Alumina-forming-austenitic Stainless Steel Exposed to Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 244-250. doi: 10.13832/j.jnpe.2023.05.0244
Citation: Sun Dayun, Gao Yang, Zhang Lefu, Han Zhongli, Guo Xianglong. Corrosion Behavior of a Novel Alumina-forming-austenitic Stainless Steel Exposed to Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 244-250. doi: 10.13832/j.jnpe.2023.05.0244

Corrosion Behavior of a Novel Alumina-forming-austenitic Stainless Steel Exposed to Supercritical Water

doi: 10.13832/j.jnpe.2023.05.0244
  • Received Date: 2022-11-29
  • Rev Recd Date: 2022-12-29
  • Publish Date: 2023-10-13
  • In order to enrich the research data on the corrosion behavior of alumina-forming-austenitic stainless steel (AFAs) in the supercritical water environment and provide support for SCWR cladding material evaluation, this study conducted the supercritical water corrosion test at 600℃/25 MPa for the independently designed AFAs, and analyzed its corrosion behavior by combining the microscopic analysis and characterization methods. The results show that the corrosion weight gain of AFAs exposed for 1000 h is 34 mg/dm2, about half of that of 310S steel under the same conditions. There is a double-layer oxide forming on surface of AFAs. The outer layer mainly consists of Fe2O3 and Ni-rich spinel, and the inner layer is mainly composed of Cr2O3. Alumina exists in the layer as discrete particles, hindering the diffusion process and promoting the formation of Cr2O3. Therefore, AFAs in this study showed excellent corrosion resistance.

     

  • loading
  • [1]
    黄彦平,臧金光. 超临界水冷堆[J]. 现代物理知识,2018, 30(4): 19-24. doi: 10.13405/j.cnki.xdwz.2018.04.006
    [2]
    SUN C W, HUI R, QU W, et al. Progress in corrosion resistant materials for supercritical water reactors[J]. Corrosion Science, 2009, 51(11): 2508-2523. doi: 10.1016/j.corsci.2009.07.007
    [3]
    COOK W G, OLIVE R P. Pourbaix diagrams for the iron–water system extended to high-subcritical and low-supercritical conditions[J]. Corrosion Science, 2012, 55: 326-331. doi: 10.1016/j.corsci.2011.10.034
    [4]
    MOTTA A T, YILMAZBAYHAN A, DA SILVA M J G, et al. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities[J]. Journal of Nuclear Materials, 2007, 371(1-3): 61-75. doi: 10.1016/j.jnucmat.2007.05.022
    [5]
    SCHULENBERG T, LEUNG L K H. SuperCritical water-cooled reactors[M]//PIORO I L. Handbook of Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2016: 189-220.
    [6]
    YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
    [7]
    FROITZHEIM J, RAVASH H, LARSSON E, et al. Investigation of chromium volatilization from FeCr interconnects by a denuder technique[J]. Journal of the Electrochemical Society, 2010, 157(9): B1295. doi: 10.1149/1.3462987
    [8]
    BRADY M P, YAMAMOTO Y, SANTELLA M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use[J]. JOM, 2008, 60(7): 12-18. doi: 10.1007/s11837-008-0083-2
    [9]
    YAMAMOTO Y, TAKEYAMA M, LU Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008, 16(3): 453-462. doi: 10.1016/j.intermet.2007.12.005
    [10]
    李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 79-82, 263.
    [11]
    ASTEMAN H, SVENSSON J E, JOHANSSON L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor[J]. Oxidation of Metals, 1999, 52(1-2): 95-111.
    [12]
    CHANG K H, CHEN S M, YEH T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700℃[J]. Corrosion Science, 2014, 81: 21-26. doi: 10.1016/j.corsci.2013.11.034
    [13]
    WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society, 1952, 99(10): 369. doi: 10.1149/1.2779605
    [14]
    PINT B A, BRADY M P, YAMAMOTO Y, et al. Evaluation of alumina-forming austenitic foil for advanced recuperators[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(10): 102302. doi: 10.1115/1.4002827
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (175) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return