Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Huang Tao, Su Haozhan, Zhang Lefu, Chen kai. Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251
Citation: Huang Tao, Su Haozhan, Zhang Lefu, Chen kai. Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251

Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water

doi: 10.13832/j.jnpe.2023.05.0251
  • Received Date: 2022-11-22
  • Rev Recd Date: 2022-12-22
  • Publish Date: 2023-10-13
  • Alloy 800H is listed as one of the main candidate nuclear fuel cladding materials in the design of supercritical water-cooled reactor (SCWR), but its corrosion performance under application conditions is significantly affected by processing conditions. In this paper, the corrosion behavior of Alloy 800H in different states in supercritical water is studied by autoclave immersion test, microscopic characterization and mechanism analysis, and the effects of surface grinding and polishing state, cold deformation and grain size on its general corrosion behavior are obtained. The results show that surface rough grinding, cold deformation and grain refinement can significantly reduce the corrosion rate and cause the law of corrosion weight gain to change from parabolic to linear. Grain refinement improves the grain boundary density of the material, and the high diffusion rate of Cr near the grain boundary is conducive to the formation of the Cr2O3 protective layer, thus improving the corrosion resistance of the material. The shallow surface deformation layer left after surface rough grinding can be recrystallized into high-density nanocrystals at high temperature, which is conducive to the rapid formation of the surface Cr2O3 protective layer and has a significant inhibitory effect on the initial corrosion behavior. The cold deformation caused by rolling improves the grain boundary and dislocation density of material, which obviously enhances the long-term corrosion resistance of the cladding tube.

     

  • loading
  • [1]
    RAHMAN M M, JI D X, JAHAN N, et al. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: A review[J]. Progress in Nuclear Energy, 2020, 124: 103320. doi: 10.1016/j.pnucene.2020.103320
    [2]
    JIANG Z H, LI Y H, WANG S Z, et al. Review on mechanisms and kinetics for supercritical water oxidation processes[J]. Applied Sciences, 2020, 10(14): 4937. doi: 10.3390/app10144937
    [3]
    KHATAMIAN D. Corrosion and deuterium uptake of Zr-based alloys in supercritical water[J]. The Journal of Supercritical Fluids, 2013, 78: 132-142. doi: 10.1016/j.supflu.2013.03.013
    [4]
    鲍一晨,张乐福,朱发文. Zr-2.5Nb合金在500℃,25MPa超临界水中的腐蚀行为[J]. 腐蚀科学与防护技术,2013, 25(5): 398-401.
    [5]
    沈朝,段振刚,李力,等. F/M钢在超临界水环境中的腐蚀性能[J]. 原子能科学技术,2014, 48(7): 1165-1171. doi: 10.7538/yzk.2014.48.07.1165
    [6]
    XIAO X, LIU G Q, HU B F, et al. Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650℃[J]. Journal of Materials Science & Technology, 2015, 31(3): 311-319.
    [7]
    LI Y H, WANG S Z, SUN P P, et al. Early oxidation mechanism of austenitic stainless steel TP347H in supercritical water[J]. Corrosion Science, 2017, 128: 241-252. doi: 10.1016/j.corsci.2017.09.023
    [8]
    GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007
    [9]
    PAYET M, MARCHETTI L, TABARANT M, et al. Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes[J]. Corrosion Science, 2019, 157: 157-166. doi: 10.1016/j.corsci.2019.05.014
    [10]
    GUZONAS D, NOVOTNY R, PENTTILÄ S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge:Woodhead Publishing,2018:139-218.
    [11]
    YANG J Q, WANG S Z, LI Y H, et al. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment[J]. Corrosion Science, 2020, 167: 108493. doi: 10.1016/j.corsci.2020.108493
    [12]
    TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. doi: 10.1016/j.corsci.2010.10.021
    [13]
    SHEN Z, WU L L, ZHANG L F, et al. Corrosion behavior of nickel base alloy 800H in high-temperature and high-pressured water[J]. Corrosion Science and Protection Technology, 2014, 26(2): 113-118.
    [14]
    CHOUDHRY K I, MAHBOUBI S, BOTTON G A, et al. Corrosion of engineering materials in a supercritical water cooled reactor: Characterization of oxide scales on Alloy 800H and stainless steel 316[J]. Corrosion Science, 2015, 100: 222-230. doi: 10.1016/j.corsci.2015.07.035
    [15]
    CHOUDHRY K I, GUZONAS D A, KALLIKRAGAS D T, et al. On-line monitoring of oxide formation and dissolution on alloy 800H in supercritical water[J]. Corrosion Science, 2016, 111: 574-582. doi: 10.1016/j.corsci.2016.05.042
    [16]
    CONG S, LIU Z, DANG Y, et al. Effects of cold work on the corrosion behavior of Alloy 800H exposed to aerated supercritical water[J]. Journal of Nuclear Materials, 2022, 559: 153408. doi: 10.1016/j.jnucmat.2021.153408
    [17]
    MACÁK J, NOVOTNÝ R, SAJDL P, et al. In-situ electrochemical impedance measurements of corroding stainless steel in high subcritical and supercritical water[J]. Corrosion Science, 2019, 150: 9-16. doi: 10.1016/j.corsci.2019.01.017
    [18]
    KRIKSUNOV L B, MACDONALD D D. Potential-pH diagrams for iron in supercritical water[J]. Corrosion, 1997, 53(8): 605-611. doi: 10.5006/1.3290292
    [19]
    GAO X, WU X Q, ZHANG Z E, et al. Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water[J]. The Journal of supercritical Fluids, 2007, 42(1): 157-163. doi: 10.1016/j.supflu.2006.12.020
    [20]
    STELLWAG B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water[J]. Corrosion Science, 1998, 40(2-3): 337-370. doi: 10.1016/S0010-938X(97)00140-6
    [21]
    ZHANG Q, TANG R, YIN K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9): 2092-2097. doi: 10.1016/j.corsci.2009.05.041
    [22]
    YANG J Q, WANG S Z, TANG X Y, et al. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water[J]. The Journal of Supercritical Fluids, 2018, 131: 1-10. doi: 10.1016/j.supflu.2017.07.008
    [23]
    LI Y H, JIANG Z H, WANG S Z, et al. Formation mechanism of the outer layer of duplex scales on stainless steels in oxygenated supercritical water[J]. Materials Letters, 2020, 270: 127731. doi: 10.1016/j.matlet.2020.127731
    [24]
    NYE J F. Some geometrical relations in dislocated crystals[J]. Acta Metallurgica, 1953, 1(2): 153-162. doi: 10.1016/0001-6160(53)90054-6
    [25]
    ZHOU N, PENG R L, PETTERSSON R. Surface characterization of austenitic stainless steel 304L after different grinding operations[J]. International Journal of Mechanical and Materials Engineering, 2017, 12(1): 6. doi: 10.1186/s40712-017-0074-6
    [26]
    LOBNIG R E, SCHMIDT H P, HENNESEN K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals, 1992, 37(1): 81-93.
    [27]
    YOUNG D J, PINT B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxidation of Metals, 2006, 66(3): 137-153.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (79) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return