Citation: | Huang Tao, Su Haozhan, Zhang Lefu, Chen kai. Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251 |
[1] |
RAHMAN M M, JI D X, JAHAN N, et al. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: A review[J]. Progress in Nuclear Energy, 2020, 124: 103320. doi: 10.1016/j.pnucene.2020.103320
|
[2] |
JIANG Z H, LI Y H, WANG S Z, et al. Review on mechanisms and kinetics for supercritical water oxidation processes[J]. Applied Sciences, 2020, 10(14): 4937. doi: 10.3390/app10144937
|
[3] |
KHATAMIAN D. Corrosion and deuterium uptake of Zr-based alloys in supercritical water[J]. The Journal of Supercritical Fluids, 2013, 78: 132-142. doi: 10.1016/j.supflu.2013.03.013
|
[4] |
鲍一晨,张乐福,朱发文. Zr-2.5Nb合金在500℃,25MPa超临界水中的腐蚀行为[J]. 腐蚀科学与防护技术,2013, 25(5): 398-401.
|
[5] |
沈朝,段振刚,李力,等. F/M钢在超临界水环境中的腐蚀性能[J]. 原子能科学技术,2014, 48(7): 1165-1171. doi: 10.7538/yzk.2014.48.07.1165
|
[6] |
XIAO X, LIU G Q, HU B F, et al. Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650℃[J]. Journal of Materials Science & Technology, 2015, 31(3): 311-319.
|
[7] |
LI Y H, WANG S Z, SUN P P, et al. Early oxidation mechanism of austenitic stainless steel TP347H in supercritical water[J]. Corrosion Science, 2017, 128: 241-252. doi: 10.1016/j.corsci.2017.09.023
|
[8] |
GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007
|
[9] |
PAYET M, MARCHETTI L, TABARANT M, et al. Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes[J]. Corrosion Science, 2019, 157: 157-166. doi: 10.1016/j.corsci.2019.05.014
|
[10] |
GUZONAS D, NOVOTNY R, PENTTILÄ S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge:Woodhead Publishing,2018:139-218.
|
[11] |
YANG J Q, WANG S Z, LI Y H, et al. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment[J]. Corrosion Science, 2020, 167: 108493. doi: 10.1016/j.corsci.2020.108493
|
[12] |
TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. doi: 10.1016/j.corsci.2010.10.021
|
[13] |
SHEN Z, WU L L, ZHANG L F, et al. Corrosion behavior of nickel base alloy 800H in high-temperature and high-pressured water[J]. Corrosion Science and Protection Technology, 2014, 26(2): 113-118.
|
[14] |
CHOUDHRY K I, MAHBOUBI S, BOTTON G A, et al. Corrosion of engineering materials in a supercritical water cooled reactor: Characterization of oxide scales on Alloy 800H and stainless steel 316[J]. Corrosion Science, 2015, 100: 222-230. doi: 10.1016/j.corsci.2015.07.035
|
[15] |
CHOUDHRY K I, GUZONAS D A, KALLIKRAGAS D T, et al. On-line monitoring of oxide formation and dissolution on alloy 800H in supercritical water[J]. Corrosion Science, 2016, 111: 574-582. doi: 10.1016/j.corsci.2016.05.042
|
[16] |
CONG S, LIU Z, DANG Y, et al. Effects of cold work on the corrosion behavior of Alloy 800H exposed to aerated supercritical water[J]. Journal of Nuclear Materials, 2022, 559: 153408. doi: 10.1016/j.jnucmat.2021.153408
|
[17] |
MACÁK J, NOVOTNÝ R, SAJDL P, et al. In-situ electrochemical impedance measurements of corroding stainless steel in high subcritical and supercritical water[J]. Corrosion Science, 2019, 150: 9-16. doi: 10.1016/j.corsci.2019.01.017
|
[18] |
KRIKSUNOV L B, MACDONALD D D. Potential-pH diagrams for iron in supercritical water[J]. Corrosion, 1997, 53(8): 605-611. doi: 10.5006/1.3290292
|
[19] |
GAO X, WU X Q, ZHANG Z E, et al. Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water[J]. The Journal of supercritical Fluids, 2007, 42(1): 157-163. doi: 10.1016/j.supflu.2006.12.020
|
[20] |
STELLWAG B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water[J]. Corrosion Science, 1998, 40(2-3): 337-370. doi: 10.1016/S0010-938X(97)00140-6
|
[21] |
ZHANG Q, TANG R, YIN K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9): 2092-2097. doi: 10.1016/j.corsci.2009.05.041
|
[22] |
YANG J Q, WANG S Z, TANG X Y, et al. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water[J]. The Journal of Supercritical Fluids, 2018, 131: 1-10. doi: 10.1016/j.supflu.2017.07.008
|
[23] |
LI Y H, JIANG Z H, WANG S Z, et al. Formation mechanism of the outer layer of duplex scales on stainless steels in oxygenated supercritical water[J]. Materials Letters, 2020, 270: 127731. doi: 10.1016/j.matlet.2020.127731
|
[24] |
NYE J F. Some geometrical relations in dislocated crystals[J]. Acta Metallurgica, 1953, 1(2): 153-162. doi: 10.1016/0001-6160(53)90054-6
|
[25] |
ZHOU N, PENG R L, PETTERSSON R. Surface characterization of austenitic stainless steel 304L after different grinding operations[J]. International Journal of Mechanical and Materials Engineering, 2017, 12(1): 6. doi: 10.1186/s40712-017-0074-6
|
[26] |
LOBNIG R E, SCHMIDT H P, HENNESEN K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals, 1992, 37(1): 81-93.
|
[27] |
YOUNG D J, PINT B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxidation of Metals, 2006, 66(3): 137-153.
|