Citation: | Zhou Qiyin, Liu Zhu, Zhang Lefu, Long Jiachen, Guo Xianglong. Reaxff-MD Simulation of the Effect of Incoherent Grain Boundaries and Its Segregation on Oxidation of 3C-SiC in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(5): 284-289. doi: 10.13832/j.jnpe.2023.05.0284 |
[1] |
董力. 超临界二氧化碳发电技术概述[J]. 中国环保产业,2017(5): 48-52. doi: 10.3969/j.issn.1006-5377.2017.05.013
|
[2] |
赵煜,董自春,张羽,等. 超临界二氧化碳发电系统研究进展[J]. 热能动力工程,2019, 34(1): 11-16. doi: 10.16146/j.cnki.rndlgc.2019.01.002
|
[3] |
吴攀,高春天,单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理,2019, 10(3): 031202.
|
[4] |
LEWIS T G, PARMA E J, WRIGHT S A, et al. Sandia’s supercritical CO2 direct cycle gas fast reactor (SC-GFR) concept[C]//2011 Small Modular Reactors Symposium. Washington: ASME, 2011: 91-94.
|
[5] |
KATO Y, NITAWAKI T, MUTO Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering and Design, 2004, 230(1-3): 195-207. doi: 10.1016/j.nucengdes.2003.12.002
|
[6] |
SUBRAMANIAN G O, KIM S H, JANG C. The carburization behavior of alloy 800HT in high temperature supercritical-CO2[J]. Materials Letters, 2021, 299: 130067. doi: 10.1016/j.matlet.2021.130067
|
[7] |
CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255. doi: 10.1016/j.corsci.2012.03.029
|
[8] |
PETROSKI R, BATES E, DIONNE B, et al. Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation[J]. Nuclear Engineering and Technology, 2022, 54(3): 877-887. doi: 10.1016/j.net.2021.09.030
|
[9] |
ZHU S J, MIZUNO M, KAGAWA Y, et al. Creep and fatigue behavior in Hi-nicalon-fiber-reinforced silicon carbide composites at high temperatures[J]. Journal of the American Ceramic Society, 1999, 82(1): 117-128.
|
[10] |
ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review[J]. Composites Science and Technology, 1999, 59(6): 833-851. doi: 10.1016/S0266-3538(99)00014-7
|
[11] |
DEÁK P, KNAUP J M, HORNOS T, et al. The mechanism of defect creation and passivation at the SiC/SiO2 interface[J]. Journal of Physics D:Applied Physics, 2007, 40(20): 6242-6253. doi: 10.1088/0022-3727/40/20/S09
|
[12] |
ITO A, AKIYAMA T, NAKAMURA K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: effect of crystalline surface orientations[J]. Japanese Journal of Applied Physics, 2015, 54(10): 101301. doi: 10.7567/JJAP.54.101301
|
[13] |
LIU C, XI J Q, SZLUFARSKA I. Sensitivity of SiC grain boundaries to oxidation[J]. The Journal of Physical Chemistry C, 2019, 123(18): 11546-11554. doi: 10.1021/acs.jpcc.9b00068
|
[14] |
DOYLE P J, ZINKLE S, RAIMAN S S. Hydrothermal corrosion behavior of CVD SiC in high temperature water[J]. Journal of Nuclear Materials, 2020, 539: 152241. doi: 10.1016/j.jnucmat.2020.152241
|
[15] |
PARK J Y, KIM I H, JUNG Y I, et al. Long-term corrosion behavior of CVD SiC in 360℃ water and 400℃ steam[J]. Journal of Nuclear Materials, 2013, 443(1-3): 603-607. doi: 10.1016/j.jnucmat.2013.07.058
|
[16] |
CANCINO-TREJO F, NAVARRO-SOLIS D J, LÓPEZ-HONORATO E, et al. Grain boundary complexions in silicon carbide[J]. Journal of the American Ceramic Society, 2018, 101(3): 1009-1013. doi: 10.1111/jace.15300
|
[17] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
|
[18] |
FOGARTY J C, AKTULGA H M, GRAMA A Y, et al. A reactive molecular dynamics simulation of the silica-water interface[J]. The Journal of Chemical Physics, 2010, 132(17): 174704. doi: 10.1063/1.3407433
|
[19] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
|
[20] |
CHEN X H, SUN Z G, CHEN Z Z, et al. ReaxFF molecular dynamics simulation of oxidation behavior of 3C-SiC in O2 and CO2[J]. Computational Materials Science, 2021, 191: 110341. doi: 10.1016/j.commatsci.2021.110341
|
[21] |
ŠIMONKA V, HÖSSINGER A, WEINBUB J, et al. ReaxFF reactive molecular dynamics study of orientation dependence of initial silicon carbide oxidation[J]. The Journal of Physical Chemistry A, 2017, 121(46): 8791-8798. doi: 10.1021/acs.jpca.7b08983
|