Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Li Yunzhao, Qin Junwei, Xia Fan, Wu Hongchun, Cao Liangzhi. Anisotropic SP3 Two-Step Method for Reactor Cores with Strong Absorbers[J]. Nuclear Power Engineering, 2023, 44(6): 9-15. doi: 10.13832/j.jnpe.2023.06.0009
Citation: Li Yunzhao, Qin Junwei, Xia Fan, Wu Hongchun, Cao Liangzhi. Anisotropic SP3 Two-Step Method for Reactor Cores with Strong Absorbers[J]. Nuclear Power Engineering, 2023, 44(6): 9-15. doi: 10.13832/j.jnpe.2023.06.0009

Anisotropic SP3 Two-Step Method for Reactor Cores with Strong Absorbers

doi: 10.13832/j.jnpe.2023.06.0009
  • Received Date: 2022-12-15
  • Rev Recd Date: 2023-02-01
  • Available Online: 2023-12-11
  • Publish Date: 2023-12-15
  • The strong absorber in the core of nuclear reactor, especially the movable control rod, will significantly enhance the angular anisotropy effect of neutron angular fluence in the core. The traditional isotropic SP3 two-step method cannot capture the feature effectively, therefore, the anisotropic SP3 two-step method needs to be constructed. Firstly, this paper studies the anisotropic effect from two aspects; the anisotropic SP3 equation is derived, and a homogenization model suitable for anisotropic SP3 equation is established. The methodology proposed in this paper was validated and analyzed through the Material Test Reactor (MTR). The results show that the anisotropy SP3 equation and its homogenization method in this paper have smaller deviation than the traditional calculation method, and the effective multiplication factor (keff) and power distribution are obviously improved. Therefore, the anisotropic SP3 two-step method in this paper can effectively deal with the core problem with strong absorbers.

     

  • loading
  • [1]
    PALMTAG S P. Advanced nodal methods for MOX fuel analysis[D]. Cambridge: Massachusetts Institute of Technology, 1997.
    [2]
    TATSUMI M, YAMAMOTO A. Advanced PWR core calculation based on multi-group nodal-transport method in three-dimensional pin-by-pin geometry[J]. Journal of Nuclear Science and Technology, 2003, 40(6): 376-387. doi: 10.1080/18811248.2003.9715369
    [3]
    YANG W, ZHENG Y Q, WU H C, et al. High-performance whole core pin-by-pin calculation based on EFEN-SP3 method[J]. Nuclear Power Engineering, 2014, 35(5): 164-167.
    [4]
    TATSUMI M, OHOKA Y, ENDO T, et al. Verification and validation of AEGIS/SCOPE2: the state-of-the-art in-core fuel management system for PWRs[C]//18th International Conference on Nuclear Engineering. Xi’an: American Society of Mechanical Engineers, 2010,doi: 10.1115/ICONE18-29154.
    [5]
    GRUNDMANN U, MITTAG S. Super-homogenisation factors in pinwise calculations by the reactor dynamics code DYN3D[J]. Annals of Nuclear Energy, 2011, 38(10): 2111-2119. doi: 10.1016/j.anucene.2011.06.030
    [6]
    LIU S C, WANG G B, LIANG J G, et al. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods[J]. Annals of Nuclear Energy, 2015, 85: 830-836. doi: 10.1016/j.anucene.2015.06.041
    [7]
    MARLEAU G, HÉBERT A, ROY R. A user guide for DRAGON version DRAGON_000331 Realease 3.04, IGE-174[Z]. 2000
    [8]
    HÉBERT A, SEKKI D, CHAMBON R. A user guide for DONJON version4: IGE-300[R]. Montréal: École Polytechnique de Montréal, 2013.
    [9]
    MA J M, WANG G B, YUAN S, et al. An improved assembly homogenization approach for plate-type research reactor[J]. Annals of Nuclear Energy, 2015, 85: 1003-1013. doi: 10.1016/j.anucene.2015.07.018
    [10]
    汤春桃. 中子输运方程特征线解法及嵌入式组件均匀化方法的研究[D]. 上海: 上海交通大学, 2009.
    [11]
    CHAUDRI K S, MIRZA S M. Burnup dependent Monte Carlo neutron physics calculations of IAEA MTR benchmark[J]. Progress in Nuclear Energy, 2015, 81: 43-52. doi: 10.1016/j.pnucene.2014.12.018
    [12]
    SHAABAN I, ALBARHOUM M. Performance of the MTR core with MOX fuel using the MCNP4C2 code[J]. Applied Radiation and Isotopes, 2016, 114: 92-103. doi: 10.1016/j.apradiso.2016.05.009
    [13]
    ALAWNEH L M, PARK C J, JARADAT M K, et al. Burnup estimation for plate type fuel assembly of research reactors through the least square fitting method[J]. Annals of Nuclear Energy, 2014, 71: 37-45. doi: 10.1016/j.anucene.2014.03.029
    [14]
    MARGULIS M, GILAD E. Monte Carlo and nodal neutron physics calculations of the IAEA MTR benchmark using Serpent/DYN3D code system[J]. Progress in Nuclear Energy, 2016, 88: 118-133. doi: 10.1016/j.pnucene.2015.12.008
    [15]
    YAMAMOTO A, KITAMURA Y, YAMANE Y. Simplified treatments of anisotropic scattering in LWR core calculations[J]. Journal of Nuclear Science and Technology, 2008, 45(3): 217-229. doi: 10.1080/18811248.2008.9711430
    [16]
    XIA F, ZU T J, WU H C. Effect and treatment of angular dependency of multi-group total cross section and anisotropic scattering in fine-mesh transport calculation[J]. Annals of Nuclear Energy, 2018, 114: 110-121. doi: 10.1016/j.anucene.2017.11.049
    [17]
    USHIO T, TAKEDA T, MORI M. Neutron anisotropic scattering effect in heterogeneous cell calculations of light water reactors[J]. Journal of Nuclear Science and Technology, 2003, 40(7): 464-480. doi: 10.1080/18811248.2003.9715381
    [18]
    GELBARD E M. Application of spherical harmonics method to reactor problems: WAPD-T-1182[R]. West Mifflin: Bettis Atomic Power Laboratory, 1960
    [19]
    NELSON A. Improved convergence rate of multi-group scattering moment tallies for Monte Carlo neutron transport codes[D]. Michigan: University of Michigan, 2014.
    [20]
    WANG S C, CAO L Z, LI Y Z, et al. An energy-group structure optimization from seven to four for PWR-core pin-by-pin calculation[J]. Nuclear Engineering and Design, 2023, 402: 112115. doi: 10.1016/j.nucengdes.2022.112115
    [21]
    IAEA. Research reactor core conversion from the use of highly enriched uranium fuels: guidebook[M]. Vienna: International Atomic Energy Agency, 1980: 39-45.
    [22]
    LI Y Z, ZHANG B, HE Q M, et al. Development and verification of PWR-core fuel management calculation code system NECP-bamboo: part I bamboo-lattice[J]. Nuclear Engineering and Design, 2018, 335: 432-440. doi: 10.1016/j.nucengdes.2018.05.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (91) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return