Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Sun Mingze, Cheng Yuting, Ma Xiaodi, Xia Zhaodong, Zhou Qi, Zhu Qingfu, Xue Xiaogang. Prediction of Critical Parameters of Reprocessing Non-uniform Conditions Based on Improved BP Neural-network[J]. Nuclear Power Engineering, 2023, 44(6): 16-22. doi: 10.13832/j.jnpe.2023.06.0016
Citation: Sun Mingze, Cheng Yuting, Ma Xiaodi, Xia Zhaodong, Zhou Qi, Zhu Qingfu, Xue Xiaogang. Prediction of Critical Parameters of Reprocessing Non-uniform Conditions Based on Improved BP Neural-network[J]. Nuclear Power Engineering, 2023, 44(6): 16-22. doi: 10.13832/j.jnpe.2023.06.0016

Prediction of Critical Parameters of Reprocessing Non-uniform Conditions Based on Improved BP Neural-network

doi: 10.13832/j.jnpe.2023.06.0016
  • Received Date: 2023-02-07
  • Rev Recd Date: 2023-03-29
  • Available Online: 2023-12-11
  • Publish Date: 2023-12-15
  • As the key process equipment of reprocessing plant, the extraction column and storage tank often have the condition of fluctuating solution concentration (i.e., non-uniform condition). When conducting critical safety analysis, technicians adopt the conservative method of enlarging concentration several times. Although this meets the conservative requirements, it introduces too much critical margin, which limits the treatment efficiency and capacity of reprocessing. In order to solve the above problems, based on the improved BP neural network method and the large-scale MC code MCNP, this study completed the gradient modeling of random concentration distribution for typical equipment structure size, and realized the critical safety analysis method of predicting effective proliferation factor (keff) based on concentration distribution. Data test results show that the average error of keff calculated under non-uniform conditions by this method is 1.82×10−4, and the convergence value of loss function MSE is 3.34×10−6, which is far smaller than the unimproved model (2.4450×10−4). At the same time, in comparison with the conservative method, the critical margin introduced by the proposed method is –1.31×10−3, which is much smaller than that of the traditional method (0.32951). The above results prove that the method in this study is more accurate and effective under the precondition of conservativeness, and provide a method reference for the critical safety analysis of reprocessing.

     

  • loading
  • [1]
    日本原子能研究所. 核临界安全手册[M]. 李喆,刘开武,胥全凯,等译. 北京:中国原子能出版社,2003:58-60.
    [2]
    王俊峰. 动力堆核燃料后处理工学[M]. 北京:中国原子能出版社,2010:632-633.
    [3]
    GOERTZEL G. Minimum critical mass and flat flux[J]. Journal of Nuclear Energy (1954), 1956, 2(3-4): 193-201. doi: 10.1016/0891-3919(55)90034-6
    [4]
    霍小东,谢仲生. 遗传算法在CANDU堆燃料管理中应用的研究[J]. 核动力工程,2005,26(6):539-543.
    [5]
    蔡宛睿,夏虹,杨波. 基于BP神经网络的堆芯三维功率重构方法研究[J]. 原子能科学技术,2018,52(12):2130-2135. doi: 10.7538/yzk.2018.youxian.0163
    [6]
    王东东,杨红义,王端,等. 中国实验快堆热工参数的自适应BP神经网络预测方法研究[J]. 原子能科学技术,2020,54(10):1809-1816.
    [7]
    SERRA P L S, MASOTTI P H F, ROCHA M S, et al. Two-phase flow void fraction estimation based on bubble image segmentation using Randomized Hough Transform with Neural Network (RHTN)[J]. Progress in Nuclear Energy, 2020, 118: 103133. doi: 10.1016/j.pnucene.2019.103133
    [8]
    ZHOU L W, GARG D, QIU Y, et al. Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120351. doi: 10.1016/j.ijheatmasstransfer.2020.120351
    [9]
    ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning[C]// Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah: USENIX, 2016: 265-283.
    [10]
    MOEKEN H H P. The density of nitric acid solutions of uranium and uranium-aluminium alloys[J]. Analytica Chimica Acta, 1969, 44(1): 225-228. doi: 10.1016/S0003-2670(01)81757-8
    [11]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [12]
    HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. doi: 10.1016/0893-6080(89)90020-8
    [13]
    万飞笑,罗泽,阎保平,等. 自适应BP神经网络在日最高气温预报中的应用[J]. 科研信息化技术与应用,2015,6(3):68-78.
    [14]
    KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
    [15]
    龙曲良. TensorFlow深度学习:深入理解人工智能算法设计[M]. 北京:清华大学出版社,2020:123-130.
    [16]
    GÉRON A. 机器学习实战[M]. 宋能辉,李娴 译. 第二版. 北京:机械工业出版社,2020:258-259.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (137) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return