Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Zhao Yanli, Liu Shichao, Li Yuanming, Tang Changbing, Lu Huaiyu. Research on Influence of Residual Pores on Thermal-Mechanical Performance of TRISO Particle in High Temperature Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 155-161. doi: 10.13832/j.jnpe.2023.06.0155
Citation: Zhao Yanli, Liu Shichao, Li Yuanming, Tang Changbing, Lu Huaiyu. Research on Influence of Residual Pores on Thermal-Mechanical Performance of TRISO Particle in High Temperature Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 155-161. doi: 10.13832/j.jnpe.2023.06.0155

Research on Influence of Residual Pores on Thermal-Mechanical Performance of TRISO Particle in High Temperature Reactor

doi: 10.13832/j.jnpe.2023.06.0155
  • Received Date: 2023-02-19
  • Rev Recd Date: 2023-03-14
  • Publish Date: 2023-12-15
  • In order to investigate the influence of residual pores that may appear in SiC layer on the in-pile performance of TRistructural ISOtropic (TRISO) particle, and find the critical size of residual pores, in this paper, the in-pile performance of TRISO particle with residual pores was numerically simulated by using the multi-physical field coupling COMSOL software, and the effects of fission gas, CO release, internal pressure and residual pore size on the stress distribution of TRISO particle coating were analyzed. The results show that in the later stage of irradiation, the ratio of CO release is much higher than that of fission gas atoms, and the internal pressure of the particle can reach 49.5 MPa in the later stage. The existence of residual pores makes the stress of silicon carbide (SiC), inner dense pyrolytic carbon layer (IPyC) and outer dense pyrolytic carbon layer (OPyC) increase rapidly, especially in the SiC layer. When the size of residual pore reaches 9 μm, the maximum stress of SiC layer reaches 600 MPa, which is much higher than its intrinsic strength. When the residual pore size is 5 μm, the maximum stress of SiC layer is about 450 MPa, which is equivalent to its intrinsic strength. Therefore, in order to ensure the structural integrity of SiC layer in the preparation process, the residual pore size of SiC layer should be less than 5 μm.

     

  • loading
  • [1]
    POWERS J J, WIRTH B D. A review of TRISO fuel performance models[J]. Journal of Nuclear Materials, 2010, 405(1): 74-82. doi: 10.1016/j.jnucmat.2010.07.030
    [2]
    LIU R Z, LIU M L, CHANG J X, et al. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition[J]. Journal of Nuclear Materials, 2015, 467: 917-926. doi: 10.1016/j.jnucmat.2015.10.055
    [3]
    MILLER G K, PETTI D A, VARACALLE D J JR, et al. Statistical approach and benchmarking for modeling of multi-dimensional behavior in TRISO-coated fuel particles[J]. Journal of Nuclear Materials, 2003, 317(1): 69-82. doi: 10.1016/S0022-3115(02)01702-6
    [4]
    SNEAD L L, TERRANI K A, KATOH Y, et al. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 389-398. doi: 10.1016/j.jnucmat.2013.09.056
    [5]
    LIU M L, LIU B, SHAO Y L, et al. Optimization design of the coating furnace by 3-d simulation of spouted bed dynamics in the coater[J]. Nuclear Engineering and Design, 2014, 271: 68-72. doi: 10.1016/j.nucengdes.2013.11.012
    [6]
    COLLIN B P. Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code[J]. Journal of Nuclear Materials, 2014, 451(1-3): 65-77. doi: 10.1016/j.jnucmat.2014.03.032
    [7]
    CHUN J H, LIM S W, CHUNG B D. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs[J]. Nuclear Engineering and Design, 2015, 289: 287-295. doi: 10.1016/j.nucengdes.2015.04.021
    [8]
    KAMALPOUR S, SALEHI A A, KHALAFI H, et al. The potential impact of Fully Ceramic Microencapsulated (FCM) fuel on thermal hydraulic performance of SMART reactor[J]. Nuclear Engineering and Design, 2018, 339: 39-52. doi: 10.1016/j.nucengdes.2018.08.029
    [9]
    TERRANI K A, KIGGANS J Q, KATOH Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels[J]. Journal of Nuclear Materials, 2012, 426(1-3): 268-276.
    [10]
    HALES J D, WILLIAMSON R L, NOVASCONE S R, et al. Multidimensional multiphysics simulation of TRISO particle fuel[J]. Journal of Nuclear Materials, 2013, 443(1-3): 531-543. doi: 10.1016/j.jnucmat.2013.07.070
    [11]
    辛勇,李垣明,唐昌兵,等. 金属基弥散微封装燃料中TRISO燃料颗粒的尺寸优化设计[J]. 核动力工程,2019, 40(2): 176-179.
    [12]
    刘仕超,周毅,李垣明,等. 多物理场耦合TRISO颗粒堆内行为研究[J]. 原子能科学技术,2022, 56(S1): 100-108.
    [13]
    DEMANGE P, MARIAN J, CARO M, et al. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket[J]. Journal of Nuclear Materials, 2010, 405(2): 144-155. doi: 10.1016/j.jnucmat.2010.08.004
    [14]
    李伟,武小莉,刘仕超,等. UN核芯TRISO包覆燃料颗粒性能分析[J]. 原子能科学技术,2018, 52(2): 283-289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (80) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return