Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Zhang Xiangwen, Fan Chenguang, He An, Wu Chuang, Yang Yujing. Performance Prediction and Structural Parameter Optimization of Control Rod Hydraulic Buffer Based on GA-BP Neural Network[J]. Nuclear Power Engineering, 2023, 44(6): 162-169. doi: 10.13832/j.jnpe.2023.06.0162
Citation: Zhang Xiangwen, Fan Chenguang, He An, Wu Chuang, Yang Yujing. Performance Prediction and Structural Parameter Optimization of Control Rod Hydraulic Buffer Based on GA-BP Neural Network[J]. Nuclear Power Engineering, 2023, 44(6): 162-169. doi: 10.13832/j.jnpe.2023.06.0162

Performance Prediction and Structural Parameter Optimization of Control Rod Hydraulic Buffer Based on GA-BP Neural Network

doi: 10.13832/j.jnpe.2023.06.0162
  • Received Date: 2023-03-05
  • Rev Recd Date: 2023-08-12
  • Publish Date: 2023-12-15
  • In order to predict the buffer performance of hydraulic buffers of control rod assemblies by back-propagation (BP) neural network model improved by genetic algorithm (GA) and to realize the optimization of structural parameters. In this study, we simulated the falling rod in hydrostatic water for a specific control rod assembly hydrodynamic buffer. By changing the adjustable parameters of the test and setting up different test conditions, a large number of test data were obtained. The maximum impact force of control rod assembly in the process of rod falling was predicted by GA-BP neural network, and an optimized mathematical model was constructed. The nonlinear programming function (fmincon) is used to solve the problem, and a more optimal combination of structural parameters is obtained. The results show that the GA-BP neural network model has higher prediction accuracy compared with the BP neural network mdoel, and the fmincon function can realize fast solution of the optimal mathematical model of the maximum impact force of the control rod assembly. Therefore, the optimization method in this paper can provide some reference for the structural optimization design of hydraulic buffers.

     

  • loading
  • [1]
    颜达鹏,杜华,刘佳,等. 控制棒驱动线缓冲结构碰撞缓冲过程分析方法[J]. 核动力工程,2017, 38(S2): 64-69. doi: 10.13832/j.jnpe.2017.S2.0064
    [2]
    段春辉,王留兵,杜华,等. 控制棒驱动线水力缓冲特性仿真研究[J]. 机床与液压,2015, 43(22): 73-76,90. doi: 10.3969/j.issn.1001-3881.2015.22.025
    [3]
    张吉斌,李垣明,黄春兰,等. 控制棒组件缓冲结构缓冲设计方法研究[J]. 中国核电,2021, 14(1): 35-39.
    [4]
    LEE Y K, LEE J H, KIM H W, et al. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor[J]. Nuclear Engineering and Technology, 2017, 49(4): 855-864. doi: 10.1016/j.net.2016.12.004
    [5]
    SON J G, LEE J H, KIM H W, et al. Influence of design modification of control rod assembly for prototype generation IV sodium-cooled Fast Reactor on drop performance[J]. Nuclear Engineering and Technology, 2019, 51(3): 922-929. doi: 10.1016/j.net.2018.11.014
    [6]
    李恬,魏炳乾,黎闫,等. 控制棒下行运动特性影响因素分析[J]. 核动力工程,2022, 43(1): 127-132. doi: 10.13832/j.jnpe.2022.01.0127
    [7]
    肖忠,马超,郭晓明. 燃料组件结构参数对于控制棒组件落棒缓冲效果的敏感性分析[J]. 核动力工程,2016, 37(5): 111-114. doi: 10.13832/j.jnpe.2016.05.0111
    [8]
    SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering With Computers, 2001, 17(2): 129-150. doi: 10.1007/PL00007198
    [9]
    SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization: a panel discussion[J]. Structural and Multidisciplinary Optimization, 2004, 27(5): 302-313.
    [10]
    余本国. BP神经网络局限性及其改进的研究[J]. 山西农业大学学报:自然科学版,2009, 29(1): 89-93.
    [11]
    吴天山,于鸿彬,李小青,等. 基于遗传算法的BP神经网络熔融沉积成型翘曲变形预测研究[J]. 热加工工艺,2019, 48(22): 48-52. doi: 10.14158/j.cnki.1001-3814.2019.22.012
    [12]
    XING Y H, LI F F. Research on the influence of hidden layers on the prediction accuracy of GA-BP neural network[J]. Journal of Physics:Conference Series, 2020, 1486(2): 022010. doi: 10.1088/1742-6596/1486/2/022010
    [13]
    魏雨晨,李旭东,刘治国,等. 基于GA-BP神经网络的航空铝合金预腐蚀疲劳寿命预测[J]. 环境技术,2022, 40(5): 178-182,205. doi: 10.3969/j.issn.1004-7204.2022.05.037
    [14]
    熊伟. 基于改进BP神经网络的车床主轴优化设计的研究[D]. 镇江: 江苏大学, 2016.
    [15]
    郭春艳. 基于改进BP神经网络的板弹簧优化设计[D]. 成都: 西南交通大学, 2021.
    [16]
    曹保金,秦小屿. MATLAB优化工具箱在机械优化设计中的应用[J]. 现代机械,2009(6): 11-13. doi: 10.3969/j.issn.1002-6886.2009.06.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (191) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return