Citation: | Zhang Xiangwen, Fan Chenguang, He An, Wu Chuang, Yang Yujing. Performance Prediction and Structural Parameter Optimization of Control Rod Hydraulic Buffer Based on GA-BP Neural Network[J]. Nuclear Power Engineering, 2023, 44(6): 162-169. doi: 10.13832/j.jnpe.2023.06.0162 |
[1] |
颜达鹏,杜华,刘佳,等. 控制棒驱动线缓冲结构碰撞缓冲过程分析方法[J]. 核动力工程,2017, 38(S2): 64-69. doi: 10.13832/j.jnpe.2017.S2.0064
|
[2] |
段春辉,王留兵,杜华,等. 控制棒驱动线水力缓冲特性仿真研究[J]. 机床与液压,2015, 43(22): 73-76,90. doi: 10.3969/j.issn.1001-3881.2015.22.025
|
[3] |
张吉斌,李垣明,黄春兰,等. 控制棒组件缓冲结构缓冲设计方法研究[J]. 中国核电,2021, 14(1): 35-39.
|
[4] |
LEE Y K, LEE J H, KIM H W, et al. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor[J]. Nuclear Engineering and Technology, 2017, 49(4): 855-864. doi: 10.1016/j.net.2016.12.004
|
[5] |
SON J G, LEE J H, KIM H W, et al. Influence of design modification of control rod assembly for prototype generation IV sodium-cooled Fast Reactor on drop performance[J]. Nuclear Engineering and Technology, 2019, 51(3): 922-929. doi: 10.1016/j.net.2018.11.014
|
[6] |
李恬,魏炳乾,黎闫,等. 控制棒下行运动特性影响因素分析[J]. 核动力工程,2022, 43(1): 127-132. doi: 10.13832/j.jnpe.2022.01.0127
|
[7] |
肖忠,马超,郭晓明. 燃料组件结构参数对于控制棒组件落棒缓冲效果的敏感性分析[J]. 核动力工程,2016, 37(5): 111-114. doi: 10.13832/j.jnpe.2016.05.0111
|
[8] |
SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering With Computers, 2001, 17(2): 129-150. doi: 10.1007/PL00007198
|
[9] |
SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization: a panel discussion[J]. Structural and Multidisciplinary Optimization, 2004, 27(5): 302-313.
|
[10] |
余本国. BP神经网络局限性及其改进的研究[J]. 山西农业大学学报:自然科学版,2009, 29(1): 89-93.
|
[11] |
吴天山,于鸿彬,李小青,等. 基于遗传算法的BP神经网络熔融沉积成型翘曲变形预测研究[J]. 热加工工艺,2019, 48(22): 48-52. doi: 10.14158/j.cnki.1001-3814.2019.22.012
|
[12] |
XING Y H, LI F F. Research on the influence of hidden layers on the prediction accuracy of GA-BP neural network[J]. Journal of Physics:Conference Series, 2020, 1486(2): 022010. doi: 10.1088/1742-6596/1486/2/022010
|
[13] |
魏雨晨,李旭东,刘治国,等. 基于GA-BP神经网络的航空铝合金预腐蚀疲劳寿命预测[J]. 环境技术,2022, 40(5): 178-182,205. doi: 10.3969/j.issn.1004-7204.2022.05.037
|
[14] |
熊伟. 基于改进BP神经网络的车床主轴优化设计的研究[D]. 镇江: 江苏大学, 2016.
|
[15] |
郭春艳. 基于改进BP神经网络的板弹簧优化设计[D]. 成都: 西南交通大学, 2021.
|
[16] |
曹保金,秦小屿. MATLAB优化工具箱在机械优化设计中的应用[J]. 现代机械,2009(6): 11-13. doi: 10.3969/j.issn.1002-6886.2009.06.006
|