Citation: | Zhao Quanbin, Zhao Kai, Chong Daotong, Liu Xiuting, Zhang Dalin, Zhuo Wenbin. Study on Off-design Operating Characteristics of Cold-end System for SCO2 Cycle Matching Fluoride-salt-cooled High-temperature Small Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 242-248. doi: 10.13832/j.jnpe.2023.06.0242 |
[1] |
周杰,韩伟实. 中、小型核动力应用前瞻[J]. 中国科技信息,2007(1): 244-245,247. doi: 10.3969/j.issn.1001-8972.2007.01.136
|
[2] |
杨军,张恩昊,郭志恒,等. 全球核能科技前沿综述[J]. 科技导报,2020, 38(20): 35-49. doi: 10.3981/j.issn.1000-7857.2020.20.010
|
[3] |
LATURKAR K, LATURKAR K. Advances in very small modular nuclear reactors[J]. Chemical Engineering Progress, 2022, 118(4): 44-51.
|
[4] |
GREENE S, GEHIN J, HOLCOMB D, et al. Pre-conceptual design of a fluoride-salt-cooled small modular advanced high temperature reactor (SmAHTR):ORNL/TM-2010/199[R]. Oak Ridge: Oak Ridge National Laboratory, 2011.
|
[5] |
MACDONALD R. Investigation and design of a secure, transportable fluoride-salt-cooled high-temperature reactor (TFHR) for isolated locations[D]. Cambridge: Massachusetts Institute of Technology, 2014.
|
[6] |
DOSTAL V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2004.
|
[7] |
BRUN K, FRIEDMAN P, DENNIS R. Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles[M]. Duxford: Woodhead Publishing, 2017: 32-35.
|
[8] |
谢永慧,王雨琦,张荻,等. 超临界二氧化碳布雷顿循环系统及透平机械研究进展[J]. 中国电机工程学报,2018, 38(24): 7276-7286. doi: 10.13334/j.0258-8013.pcsee.180264
|
[9] |
MOISSEYTSEV A, SIENICKI J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor[J]. Nuclear Engineering and Design, 2009, 239(7): 1362-1371. doi: 10.1016/j.nucengdes.2009.03.017
|
[10] |
MOISSEYTSEV A, SIENICKI J J. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor:ANL-06/27[R]. Argonne: Argonne National Laboratory, 2007.
|
[11] |
杨红义,杨晓燕,张东旭,等. 基于超临界二氧化碳动力转换系统的革新型钠冷快堆关键技术研究[J]. 中国科学:技术科学,2021, 51(3): 324-340.
|
[12] |
黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005
|
[13] |
石明珠. 核动力船舰超临界二氧化碳循环系统建模及性能分析[D]. 南京: 东南大学, 2020.
|
[14] |
AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
|
[15] |
CRESPI F, GAVAGNIN G, SÁNCHEZ D, et al. Supercritical carbon dioxide cycles for power generation: A review[J]. Applied Energy, 2017, 195: 152-183. doi: 10.1016/j.apenergy.2017.02.048
|
[16] |
吴新汶,邵应娟,钟文琪. 600MW煤基超临界二氧化碳循环PCHE预冷器设计及传热特性研究[J]. 中国电机工程学报,2023, 43(15): 5916-5925.
|
[17] |
COOKE D H. Modeling of off-design multistage turbine pressures by stodola’s ellipse[C]. Energy Incorporated PEPSE User’s Group Meeting, Richmond, VA, 1983: 2-3
|
[18] |
DYREBY J J. Modeling the supercritical carbon dioxide Brayton cycle with recompression[D]. Madison: University of Wisconsin, 2014.
|
[19] |
MA Y G, MOROSUK T, LIU M, et al. Investigation of off-design characteristics of an improved recompression supercritical carbon dioxide cycle for concentrated solar power application[J]. International Journal of Energy Research, 2021, 45(2): 1818-1835. doi: 10.1002/er.5857
|
[20] |
王雪,孙恩慧,徐进良,等. 超临界二氧化碳循环关键部件成本模型研究进展[J]. 中国电机工程学报,2022, 42(2): 650-662.
|