Citation: | Fu Guozhong, Du Hua, Zhang Zhiqiang, Li Qingzhao, Huang Siyu, Liu Yanting. Remaining Useful Life Prediction of Rolling Bearings Based on Attention Mechanism and CNN-BiLSTM[J]. Nuclear Power Engineering, 2023, 44(S2): 33-38. doi: 10.13832/j.jnpe.2023.S2.0033 |
[1] |
WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. doi: 10.1109/TR.2018.2882682
|
[2] |
ZHAO H M, LIU H D, JIN Y, et al. Feature extraction for data-driven remaining useful life prediction of rolling bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3511910.
|
[3] |
WANG Y W, DENG L, ZHENG L Y, et al. Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics[J]. Journal of Manufacturing Systems, 2021, 60: 512-526. doi: 10.1016/j.jmsy.2021.07.008
|
[4] |
LI W X, SHANG Z W, GAO M S, et al. Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions[J]. Reliability Engineering & System Safety, 2022, 226: 108722.
|
[5] |
LI X, ZHANG W, DING Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J]. Reliability Engineering & System Safety, 2019, 182: 208-218.
|
[6] |
鲍霁星. 一维CNN模型在车轴疲劳裂纹声发射信号中的应用研究[D]. 大连: 大连交通大学,2020.
|
[7] |
ZHAO C Y, HUANG X Z, LIU H Z, et al. A novel bootstrap ensemble learning convolutional simple recurrent unit method for remaining useful life interval prediction of turbofan engines[J]. Measurement Science and Technology, 2022, 33(12): 125004. doi: 10.1088/1361-6501/ac84f6
|
[8] |
刘会永,张松,李剑峰,等. 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程,2022, 33(16): 1940-1947,1956. doi: 10.3969/j.issn.1004-132X.2022.16.007
|
[9] |
蔡薇薇,徐彦伟,颉潭成. 基于CNN-LSTM的轴承剩余使用寿命预测[J]. 机械传动,2022, 46(10): 17-23. doi: 10.16578/j.issn.1004.2539.2022.10.003
|
[10] |
CHENG Y W, HU K, WU J, et al. A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings[J]. Advanced Engineering Informatics, 2021, 48: 101247. doi: 10.1016/j.aei.2021.101247
|
[11] |
LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
|
[12] |
李少鹏. 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学,2019.
|
[13] |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]//Proceedings of 2017 IEEE International Conference on Prognostics and Health Management. Dallas: IEEE, 2017.
|
[14] |
WANG F T, LIU X F, DENG G, et al. Remaining life prediction method for rolling bearing based on the long short-term memory network[J]. Neural Processing Letters, 2019, 50(3): 2437-2454. doi: 10.1007/s11063-019-10016-w
|
[15] |
LIU H, LIU Z Y, JIA W Q, et al. Remaining useful life prediction using a novel feature-attention-based end-to-end approach[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 1197-1207. doi: 10.1109/TII.2020.2983760
|
[16] |
雷亚国,韩天宇,王彪,等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报,2019, 55(16): 1-6.
|
[17] |
WANG P, LONG Z Q, WANG G. A hybrid prognostics approach for estimating remaining useful life of wind turbine bearings[J]. Energy Reports, 2020, 6 Suppl 9: 173-182.
|
[18] |
LI N P, LEI Y G, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773. doi: 10.1109/TIE.2015.2455055
|
[19] |
LI K, WU J J, ZHANG Q J, et al. New particle filter based on GA for equipment remaining useful life prediction[J]. Sensors, 2017, 17(4): 696. doi: 10.3390/s17040696
|