Advance Search
Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Wang Mouhao, Bu Shanshan, Zhou Bing, Li Zhenzhong, Chen Deqi. Peak Temperature Prediction Method Based on A Theoretical Model of Equivalent Thermal Conductivity for Fully Ceramic Microencapsulated Fuel[J]. Nuclear Power Engineering, 2024, 45(1): 41-48. doi: 10.13832/j.jnpe.2024.01.0041
Citation: Wang Mouhao, Bu Shanshan, Zhou Bing, Li Zhenzhong, Chen Deqi. Peak Temperature Prediction Method Based on A Theoretical Model of Equivalent Thermal Conductivity for Fully Ceramic Microencapsulated Fuel[J]. Nuclear Power Engineering, 2024, 45(1): 41-48. doi: 10.13832/j.jnpe.2024.01.0041

Peak Temperature Prediction Method Based on A Theoretical Model of Equivalent Thermal Conductivity for Fully Ceramic Microencapsulated Fuel

doi: 10.13832/j.jnpe.2024.01.0041
  • Received Date: 2023-04-17
  • Rev Recd Date: 2023-06-05
  • Publish Date: 2024-02-15
  • In order to satisfy the engineering need for rapid prediction of peak temperatures of Fully Ceramic Microencapsulated (FCM) fuels, inverse calculations of peak fuel temperatures could be performed by substituting the equivalent thermal conductivity of the fuel into a simplified homogeneous thermal conductivity model. In this paper, based on the multi-annulus model developed in previous study, a theoretical model for calculating the equivalent thermal conductivity of FCM fuel is derived by starting from the basic thermal conductivity equation and taking the peak fuel temperature as a conserved quantity, and the multi-annulus model is further equivalent to a homogeneous model. Then the derived model is compared with some conventional equivalent thermal conductivity theoretical models. The results show that the developed theoretical model could be combined with the homogeneous model to effectively achieve the prediction of peak fuel temperatures. The developed theoretical method is suitable for predicting the peak temperature of FCM fuel elements with internal heat sources, because the deviation between the predicted peak temperature and the actual value is basically within 3%. The developed theoretical model prediction method based on equivalent thermal conductivity could realize the rapid prediction of the peak temperature of FCM fuel.

     

  • loading
  • [1]
    OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520-533. doi: 10.1016/j.jnucmat.2013.09.052
    [2]
    SNEAD L L, TERRANI K A, KATOH Y, et al. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 389-398. doi: 10.1016/j.jnucmat.2013.09.056
    [3]
    SNEAD L L, TERRANI K A, VENNERI F, et al. Fully ceramic microencapsulated fuels: a transformational technology for present and next generation reactors- Properties and fabrication of FCM fuel[J]. Transactions of the American Nuclear Society, 2011, 104: 6.
    [4]
    TERRANI K A, SNEAD L L, GEHIN J C. Microencapsulated fuel technology for commercial light water and advanced reactor application[J]. Journal of Nuclear Materials, 2012, 427(1-3): 209-224. doi: 10.1016/j.jnucmat.2012.05.021
    [5]
    李文杰,余红星,肖忠,等. 高体积份额下包覆颗粒弥散燃料等效热学模型[J]. 核动力工程,2021,42(4):96-100. doi: 10.13832/j.jnpe.2021.04.0096
    [6]
    MAXWELL J C. A treatise on electricity and magnetism[M]. Oxford: Cambridge University Press, 1873: 360-373.
    [7]
    CHIEW Y C, GLANDT E D. The effect of structure on the conductivity of a dispersion[J]. Journal of Colloid and Interface Science, 1983, 94(1): 90-104. doi: 10.1016/0021-9797(83)90238-2
    [8]
    BRUGGEMAN D A G. Dielectric constant and conductivity of mixtures of isotropic materials[J]. Ann Phys (Leipzig), 1935, 24: 636-679.
    [9]
    RAGHAVAN V R, MARTIN H. Modelling of two-phase thermal conductivity[J]. Chemical Engineering and Processing:Process Intensification, 1995, 34(5): 439-446. doi: 10.1016/0255-2701(94)00577-X
    [10]
    刘子平,孙俊. 含内热源复合平板等效导热系数研究[J]. 哈尔滨工程大学学报,2021,42(12):1832-1836,1842.
    [11]
    刘子平,孙俊. 含分布式内热源复合平板等效导热系数模型[J]. 清华大学学报:自然科学版,2023,63(1):104-113.
    [12]
    KAMALPOUR S, SALEHI A A, KHALAFI H, et al. The potential impact of fully ceramic microencapsulated (FCM) fuel on thermal hydraulic performance of SMART reactor[J]. Nuclear Engineering and Design, 2018, 339: 39-52. doi: 10.1016/j.nucengdes.2018.08.029
    [13]
    LIU M L, THURGOOD J, LEE Y, et al. Development of a two-regime heat conduction model for TRISO-based nuclear fuels[J]. Journal of Nuclear Materials, 2019, 519: 255-264. doi: 10.1016/j.jnucmat.2019.04.004
    [14]
    WANG M H, BU S S, ZHOU B, et al. Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel[J]. Nuclear Engineering and Technology, 2023, 55(3): 1140-1151. doi: 10.1016/j.net.2022.12.001
    [15]
    LIU M L, LEE Y, RAO D V. Development of effective thermal conductivity model for particle-type nuclear fuels randomly distributed in a matrix[J]. Journal of Nuclear Materials, 2018, 508: 168-180. doi: 10.1016/j.jnucmat.2018.05.044
    [16]
    WANG M H, ZHOU B, BU S S, et al. A multi-annulus heat conduction model for predicting the peak temperature of nuclear fuels with randomly dispersed TRISO particles[J]. Progress in Nuclear Energy, 2023, 158: 104602. doi: 10.1016/j.pnucene.2023.104602
    [17]
    唐春和,杨林,刘超,等. 高温气冷堆燃料元件发展前景[J]. 原子能科学技术,2007,41(S2):316-321.
    [18]
    钱立波,余红星,孙玉发,等. TRISO燃料颗粒等效导热系数理论模型研究[J]. 核动力工程,2020,41(6):69-74. doi: 10.13832/j.jnpe.2020.06.0069
    [19]
    FINK J K. Thermophysical properties of uranium dioxide[J]. Journal of Nuclear Materials, 2000, 279(1): 1-18. doi: 10.1016/S0022-3115(99)00273-1
    [20]
    SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (177) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return