Advance Search
Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Zhang Shunlin, Pan Dong, Yin Xing, Chen Yong, Zhao Haibo, Sun Lan, Wang Jun. Thermal-shock Properties and Anticorrosion Behavior in Static LBE of Al2O3-TiO2/FeCrAl Coating by Multi-Arc Ion Plating[J]. Nuclear Power Engineering, 2024, 45(1): 90-97. doi: 10.13832/j.jnpe.2024.01.0090
Citation: Zhang Shunlin, Pan Dong, Yin Xing, Chen Yong, Zhao Haibo, Sun Lan, Wang Jun. Thermal-shock Properties and Anticorrosion Behavior in Static LBE of Al2O3-TiO2/FeCrAl Coating by Multi-Arc Ion Plating[J]. Nuclear Power Engineering, 2024, 45(1): 90-97. doi: 10.13832/j.jnpe.2024.01.0090

Thermal-shock Properties and Anticorrosion Behavior in Static LBE of Al2O3-TiO2/FeCrAl Coating by Multi-Arc Ion Plating

doi: 10.13832/j.jnpe.2024.01.0090
  • Received Date: 2023-04-23
  • Rev Recd Date: 2023-06-20
  • Publish Date: 2024-02-15
  • This work aims to explore a method for preparing the surface coating of FeCrAl alloy, a cladding material in nuclear power industry. The Al2O3-TiO2 coating with FeCrAl as the intermediate layer was prepared on FeCrAl alloy by multi-arc ion plating. The thermal-shock test was carried out to explore the thermal-shock resistance of the coating. The corrosion resistance of the coating was studied after the static lead-bismuth eutectic (LBE) corrosion test at 600℃ for 1000 h. The phase composition and micromorphologies of substrate and coating samples before and after LBE corrosion were characterized. The results showed that the Al2O3-TiO2 prepared by multi-arc ion plating was amorphous. After 30 thermal shock tests, the coating did not crack or fall off. After the corrosion, the surface of FeCrAl substrate showed obvious dissolution corrosion. GIXRD results showed that Al2O3 crystallization occurred in the coating samples after corrosion. The Al2O3 structure on the surface shrank and pores appeared, while the inner layer of the coating remained dense. The sectional analysis showed that LBE did not penetrate into the coating. Therefore, the Al2O3-TiO2/FeCrAl coating can effectively protect the substrate from LBE corrosion.

     

  • loading
  • [1]
    LORUSSO P, BASSINI S, DEL NEVO A, et al. GEN-IV LFR development: status & perspectives[J]. Progress in Nuclear Energy, 2018, 105: 318-331. doi: 10.1016/j.pnucene.2018.02.005
    [2]
    DENG L L, WANG Y Q, ZHAI Z A, et al. Multi-physics model development for polonium transport behavior in a lead-cooled fast reactor[J]. Frontiers in Energy Research, 2021, 9: 711916. doi: 10.3389/fenrg.2021.711916
    [3]
    CHENG S B, ZOU Y L, DONG Y H, et al. Experimental study on pressurization characteristics of a water droplet entrapped in molten LBE pool[J]. Nuclear Engineering and Design, 2021, 378: 111192. doi: 10.1016/j.nucengdes.2021.111192
    [4]
    ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [5]
    ZHU R S, CHEN Y M, LU Y G, et al. Research on structure selection and design of LBE-cooled fast reactor main coolant pump[J]. Nuclear Engineering and Design, 2021, 371: 110973. doi: 10.1016/j.nucengdes.2020.110973
    [6]
    GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920. doi: 10.1016/j.pmatsci.2022.100920
    [7]
    WANG H R, YU H, LIU J R, et al. Characterization and corrosion behavior of Al-added high Mn ODS austenitic steels in oxygen-saturated lead-bismuth eutectic[J]. Corrosion Science, 2022, 209: 110818. doi: 10.1016/j.corsci.2022.110818
    [8]
    YAMAKI E, TAKAHASHI M. Corrosion resistance of Fe-Al-alloy-coated ferritic/martensitic steel under bending stress in high-temperature lead-bismuth eutectic[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 797-804. doi: 10.1080/18811248.2011.9711762
    [9]
    SUN W J, TANG Z H, WANG J, et al. Corrosion behavior of a Cr-Al coating deposited on 304 austenitic stainless steel by multi-arc ion plating in liquid lead–bismuth eutectic[J]. Coatings, 2022, 12(5): 667. doi: 10.3390/coatings12050667
    [10]
    LO K C, LAI H Y. Corrosion enhancement for FGM coolant pipes subjected to high-temperature and hydrostatic pressure[J]. Coatings, 2022, 12(5): 666. doi: 10.3390/coatings12050666
    [11]
    WEISENBURGER A, JIANU A, AN W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550℃[J]. Journal of Nuclear Materials, 2012, 431(1-3): 77-84. doi: 10.1016/j.jnucmat.2011.11.027
    [12]
    DAI Y, BOUTELLIER V, GAVILLET D, et al. FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE[J]. Journal of Nuclear Materials, 2012, 431(1-3): 66-76. doi: 10.1016/j.jnucmat.2011.11.006
    [13]
    WU Z Y, ZHAO X, LIU Y, et al. Lead-bismuth eutectic (LBE) corrosion behavior of AlTiN coatings at 550 and 600℃[J]. Journal of Nuclear Materials, 2020, 539: 152280. doi: 10.1016/j.jnucmat.2020.152280
    [14]
    FERRÉ F G, MAIROV A, IADICICCO D, et al. Corrosion and radiation resistant nanoceramic coatings for lead fast reactors[J]. Corrosion Science, 2017, 124: 80-92. doi: 10.1016/j.corsci.2017.05.011
    [15]
    FERRÉ F G, ORMELLESE M, DI FONZO F, et al. Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: a preliminary study[J]. Corrosion Science, 2013, 77: 375-378. doi: 10.1016/j.corsci.2013.07.039
    [16]
    农毅. Al2O3-TiO2复相涂层制备及其LBE动态腐蚀性能研究[D]. 衡阳:南华大学,2017.
    [17]
    廖孟德,许文举,吉利,等. 氧气流量对电弧离子镀制备氧化铬薄膜结构及摩擦学性能的影响[J]. 表面技术,2021,50(5):168-176. doi: 10.16490/j.cnki.issn.1001-3660.2021.05.018
    [18]
    尹衍升,高振民,张景德,等. Fe3Al/Al2O3陶瓷复合梯度涂层抗热震性研究[J]. 硅酸盐学报,2003,31(9):867-872. doi: 10.3321/j.issn:0454-5648.2003.09.011
    [19]
    袁哲,张树林,李争显,等. 多弧离子镀设备阴极电弧蒸发源工作稳定性的研究[J]. 真空,1992(2):24-30. doi: 10.13385/j.cnki.vacuum.1992.02.004
    [20]
    曹琳琳. FeCrAl涂层的磁控溅射制备与腐蚀性能研究[D]. 西安:西安理工大学,2017.
    [21]
    王丽娜. FeCrAl涂层的制备及抗氧化性能研究[D]. 西安:西安理工大学,2018.
    [22]
    宋斌斌,吴平,陈森,等. 射频磁控溅射法制备氧化铝涂层绝缘性能及吸氢特性[J]. 原子能科学技术,2010,44(11):1311-1317.
    [23]
    邓振强. FeCrAl不锈钢相析出与形变机理研究[D]. 北京:北京科技大学,2021.
    [24]
    吴晓东,翁端,陈震,等. 等离子喷涂NiCrAl/ZrO2过渡层对FeCrAl/γ-Al2O3结合性能的影响[J]. 清华大学学报:自然科学版,2002,42(10):1293-1296.
    [25]
    ZHONG Y L, ZHANG W, CHEN Q S, et al. Effect of LBE corrosion on microstructure of amorphous Al2O3 coating by magnetron sputtering[J]. Surface and Coatings Technology, 2022, 443: 128598. doi: 10.1016/j.surfcoat.2022.128598
    [26]
    MAVRIČ A, VALANT M, CUI C H, et al. Advanced applications of amorphous alumina: from nano to bulk[J]. Journal of Non-Crystalline Solids, 2019, 521: 119493. doi: 10.1016/j.jnoncrysol.2019.119493
    [27]
    马良义,台鹏飞,王志光,等. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报,2022,36(7):20100178.
    [28]
    WAN Q, WU Z Y, LIU Y, et al. Lead-bismuth eutectic (LBE) corrosion mechanism of nano-amorphous composite TiSiN coatings synthesized by cathodic arc ion plating[J]. Corrosion Science, 2021, 183: 109264. doi: 10.1016/j.corsci.2021.109264
    [29]
    农毅,邱长军,杨育洁,等. Al2O3-TiO2复相陶瓷涂层在动态LBE中的耐腐蚀行为[J]. 表面技术,2017,46(4):235-239.
    [30]
    DU X C, NIU F L, ZHU H P, et al. Influence of oxide scale on the wettability of LBE on T91 steel[J]. Fusion Engineering and Design, 2017, 125: 378-383. doi: 10.1016/j.fusengdes.2017.03.089
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (44) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return