Advance Search
Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Wang Yue, Yuan Tianrun, Zhuang Yaping, Zhang Jin, Zhou Yuanyuan, Han Xiaoqu. Research on Dynamic Characteristics of PWR Nuclear Power Unit under Variable Power Loads Based on APROS[J]. Nuclear Power Engineering, 2024, 45(1): 210-217. doi: 10.13832/j.jnpe.2024.01.0210
Citation: Wang Yue, Yuan Tianrun, Zhuang Yaping, Zhang Jin, Zhou Yuanyuan, Han Xiaoqu. Research on Dynamic Characteristics of PWR Nuclear Power Unit under Variable Power Loads Based on APROS[J]. Nuclear Power Engineering, 2024, 45(1): 210-217. doi: 10.13832/j.jnpe.2024.01.0210

Research on Dynamic Characteristics of PWR Nuclear Power Unit under Variable Power Loads Based on APROS

doi: 10.13832/j.jnpe.2024.01.0210
  • Received Date: 2023-02-20
  • Rev Recd Date: 2023-08-10
  • Publish Date: 2024-02-15
  • A dynamic model of the million kilowatt PWR unit including the main equipment of the primary and secondary circuits was built based on the modular modeling method by using the simulation software APROS. The steady-state and dynamic processes were simulated and verified. The dynamic characteristics of the main parameters of the system under the different rates of linear load shedding and different step load shedding were studied. The results show that when the step load reduction is less than or equal to 2% full power (FP), the average temperature (Tavg) fluctuation in the primary circuit is small, which cannot cause the action of control bar; when the step load reduction is greater than 2%FP and less than or equal to 5%FP, the Tavg fluctuation causes the control bar to act but quickly returns to the temperature dead zone. Eventually, the stabilized Tavg ended up higher than the initial temperature. In the process of linear load change, the maximum pressure change of the pressurizer can reach 0.3 MPa. Since the specific volume of coolant is positively related to the temperature, the changing trend of the pressurizer water level is consistent with that of the average temperature of the loop. The purpose of this study is to provide theoretical reference for the flexible operation of PWR nuclear power plant.

     

  • loading
  • [1]
    鉴庆之,孙东磊,王超凡,等. 高比例可再生能源电网消纳及调峰灵活性评估[J]. 山东大学学报:工学版,2022, 52(5): 123-131,140.
    [2]
    王建强,戴志敏,徐洪杰. 核能综合利用研究现状与展望[J]. 中国科学院院刊,2019, 34(4): 460-468.
    [3]
    王瑞林,孙杰,洪慧. 可再生能源与燃煤发电集成互补系统综述[J]. 洁净煤技术,2022, 28(11): 10-18.
    [4]
    DONG Z, PAN Y F. A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant[J]. Energy, 2018, 145: 638-656. doi: 10.1016/j.energy.2017.12.153
    [5]
    VAJPAYEE V, BECERRA V, BAUSCH N, et al. Dynamic modelling, simulation, and control design of a pressurized water-type nuclear power plant[J]. Nuclear Engineering and Design, 2020, 370: 110901. doi: 10.1016/j.nucengdes.2020.110901
    [6]
    吕崇德, 任挺进, 姜学智, 等. 大型火电机组系统仿真与建模[M]. 北京: 清华大学出版社, 2002: 19-28.
    [7]
    杨江,田文喜,苏光辉,等. AP1000冷管段小破口失水事故分析[J]. 原子能科学技术,2011, 45(5): 541-547.
    [8]
    李想,孙皖,丁书华,等. 基于RELAP5的LOCA喷放阶段下降段内CCFL特性研究[J]. 核动力工程,2022, 43(3): 58-65.
    [9]
    WAHID A, SUNDARI T, RATIKO R. Dynamic modeling and controlling of a spent nuclear fuel storage pool under periodic operation and station blackout conditions[J]. Annals of Nuclear Energy, 2022, 166: 108751. doi: 10.1016/j.anucene.2021.108751
    [10]
    赵利刚. 基于APROS的核电站加热器建模与仿真[J]. 能源与节能,2016(4): 90-91,178.
    [11]
    田培妤,李毅,梁铁波,等. 基于APROS的核动力系统建模与仿真研究[J]. 核动力工程,2022, 43(4): 154-161.
    [12]
    吴国旸,鞠平,宋新立,等. 电力系统动态仿真中AP1000核电机组的简化实用模型[J]. 中国电机工程学报,2017, 37(6): 1657-1665.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (39) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return