Advance Search
Wang Weiguo, Li Yunzhao, Qin Junwei, Cao Liangzhi. Analytical Solution Study on Transient Neutron Transport in Homogeneous Bare Reactor Based on Neutron Telegraph Equation[J]. Nuclear Power Engineering, 2024, 45(2): 42-46. doi: 10.13832/j.jnpe.2024.02.0042
Citation: Wang Weiguo, Li Yunzhao, Qin Junwei, Cao Liangzhi. Analytical Solution Study on Transient Neutron Transport in Homogeneous Bare Reactor Based on Neutron Telegraph Equation[J]. Nuclear Power Engineering, 2024, 45(2): 42-46. doi: 10.13832/j.jnpe.2024.02.0042

Analytical Solution Study on Transient Neutron Transport in Homogeneous Bare Reactor Based on Neutron Telegraph Equation

doi: 10.13832/j.jnpe.2024.02.0042
  • Received Date: 2023-05-26
  • Rev Recd Date: 2023-06-16
  • Publish Date: 2024-04-12
  • The Fick's law, as the foundation of the diffusion theory, further neglects the time derivative term of the neutron current density in the P1 approximation equation (telegraph equation) of the neutron transport equation. Therefore, it is difficult to accurately describe the actual neutron kinetic behavior in the transient process. In this paper, based on the monoenergetic neutron telegraph equation, an analytical solution is derived for the one-dimensional infinite slab bare reactor neutron kinetics problem using the method of separation of variables, and it is compared and analyzed with the analytical solution of the neutron diffusion equation. The study reveals that during transient changes, the spatial term of the telegraph equation still maintains the form of a cosine function compared to the diffusion equation's solution, but the variation of the temporal term is more complex. Firstly, the combination form of the temporal term's orders is influenced by the geometry and materials of the problem. Secondly, higher-order harmonics exhibit oscillatory changes with time. These research findings can provide references and foundations for subsequent numerical theoretical studies based on the neutron telegraph equation.

     

  • [1]
    谢仲生,邓力. 中子输运理论数值计算方法[M]. 西安: 西北工业大学出版社,2005: 71-72.
    [2]
    吴宏春,郑友琦,曹良志,等. 中子输运方程确定论数值方法[M]. 北京: 中国原子能出版社,2018: 100-102.
    [3]
    HEIZLER S I. Asymptotic telegrapher’s equation ( P1) approximation for the transport equation[J]. Nuclear Science and Engineering, 2010, 166(1): 17-35. doi: 10.13182/NSE09-77
    [4]
    WEISS G H. Some applications of persistent random walks and the telegrapher's equation[J]. Physica A:Statistical Mechanics and its Applications, 2002, 311(3-4): 381-410. doi: 10.1016/S0378-4371(02)00805-1
    [5]
    ALTAHHAN M R, NAGY M S, ABOU-GABAL H H, et al. Formulation of a point reactor kinetics model based on the neutron telegraph equation[J]. Annals of Nuclear Energy, 2016, 91: 176-188. doi: 10.1016/j.anucene.2016.01.011
    [6]
    ALTAHHAN M R, ABOANBER A E, ABOU-GABAL H H. Analytical solution of the Telegraph Point Reactor Kinetics model during the cold start-up of a nuclear reactor[J]. Annals of Nuclear Energy, 2017, 109: 574-582. doi: 10.1016/j.anucene.2017.06.001
    [7]
    ALTAHHAN M R, ABOANBER A E, ABOU-GABAL H H, et al. Response of the point-reactor telegraph kinetics to time varying reactivities[J]. Progress in Nuclear Energy, 2017, 98: 109-122. doi: 10.1016/j.pnucene.2017.03.008
    [8]
    ALTAHHAN M R, AVRAMOVA M N, IVANOV K N. Reactor dynamics based on the neutron telegraph equation[J]. Transactions of the American Nuclear Society, 2017, 117: 753-756.
    [9]
    ALTAHHAN M R, BALESTRA P, HOU J, et al. Implementation of the multigroup telegraph based P1 approximation and comparison to the multigroup diffusion based P1 approximation in Gen-Foam[C]//Proceedings of the Fourth International Conference on Physics and Technology of Reactors and Applications. Marrakech, Morocco: GMTR, 2018.
    [10]
    ABOANBER A E, NAHLA A A, EL-MHLAWY A M, et al. An efficient exponential representation for solving the two-energy group point telegraph kinetics model[J]. Annals of Nuclear Energy, 2022, 166: 108698. doi: 10.1016/j.anucene.2021.108698
    [11]
    ZAREI M. An adjoint sensitivity analysis of the Telegrapher's neutron kinetic equations[J]. Annals of Nuclear Energy, 2022, 167: 108839. doi: 10.1016/j.anucene.2021.108839
    [12]
    吴宏春,曹良志,郑友琦,等. 核反应堆物理[M]. 北京: 中国原子能出版社,2014: 51-54.
  • Relative Articles

    [1]Niu Yixiao, Li Jiafang, Yang Chun, Liu Yang, Lai Qiuyu, Fu Meirui, Jiang Yi. Research on Algorithm of Solving Neutron Equation Based on ResNet-PINN[J]. Nuclear Power Engineering, 2025, 46(2): 76-80. doi: 10.13832/j.jnpe.2024.080035
    [2]Yu Caiyang, Jiang Yong, Chen Qilong, Liu Dong, Lyu Jiancheng. Research on Efficient Solution of Neutron Physics Equations Using NAS-Optimized PINN[J]. Nuclear Power Engineering, 2025, 46(2): 119-126. doi: 10.13832/j.jnpe.2024.090041
    [3]Wang Yahui, Xiao Hao, Ma Yu, Xie Yuchen, Chi Honghang. Research on Lattice Boltzmann Solution of Generalized Convection Diffusion Equation Based on Physical Fusion Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 56-67. doi: 10.13832/j.jnpe.2024.070062
    [4]Xu Bo, Zhao Long, Deng Junkai, Li Yang, Guo Kerong, Gong Houjun. Ab Initio Molecular Dynamics Calculation of Diffusion Coefficients of Molten Materials[J]. Nuclear Power Engineering, 2023, 44(1): 73-78. doi: 10.13832/j.jnpe.2023.01.0073
    [5]Liu Dong, Luo Qi, Tang Lei, An Ping, Yang Fan. Solving Multi-Dimensional Neutron Diffusion Equation Using Deep Machine Learning Technology Based on PINN Model[J]. Nuclear Power Engineering, 2022, 43(2): 1-8. doi: 10.13832/j.jnpe.2022.02.0001
    [6]Wang Kun, Dong Xiuchen, Zhang Xin. Research on Multi-Physics Coupling Based on FLUENT[J]. Nuclear Power Engineering, 2020, 41(4): 12-16.
    [7]Cai Yun, Zhang Zhizhu, Li Qing, Wang Shuai. Application of Diagonally Implicit Runge Kutta with Exponential Transformation on Point Kinetic Equations[J]. Nuclear Power Engineering, 2018, 39(S1): 24-27. doi: 10.13832/j.jnpe.2018.S1.0024
    [8]Liu Guocai, Wang Kaikai, Zhang Haiqian. Analytic Method Study of Neutron-Kinetic Equations in Molten Salt Reactor[J]. Nuclear Power Engineering, 2018, 39(1): 20-23. doi: 10.13832/j.jnpe.2018.01.0020
    [9]Wu Wenbin, Luo Qi, Yu Yingrui, Li Qing, YAo Dong. Calculation of Higher Eigenmodes of Neutron Transport/Diffusion Forward and Adjoint Equations Using IRAM Algorithm Based on Domain Decomposition[J]. Nuclear Power Engineering, 2017, 38(S2): 1-6. doi: 10.13832/j.jnpe.2017.S2.0001
    [10]Li Xingzhao, Li Pengzhou, Sun Lei. Decoupling Solution and Verification of Free Vibration Equation of Curved Beam[J]. Nuclear Power Engineering, 2016, 37(S2): 7-10. doi: 10.13832/j.jnpe.2016.S2.0007
    [11]He Xiaoqiang, Yu Hongxing, Jiang Guangming, Dang Gaojian, Wu Dan, Zhang Yu. A Simulation of Hysteresis Phenomenon during Cladding Transient Oxidation[J]. Nuclear Power Engineering, 2016, 37(2): 70-73. doi: 10.13832/j.jnpe.2016.02.0070
    [12]Wu Hao, Gui Nan, Yang Xingtuan, Tu Jiyuan, Jiang Shengyao. Study on Mechanism of Radiation Heat Exchange for High Temperature Pebble Beds[J]. Nuclear Power Engineering, 2016, 37(2): 32-37. doi: 10.13832/j.jnpe.2016.02.0032
    [13]Wu Wenbin, Li Qing, Sun Wei, Wei Yanqin. Solving 3-D Neutron Diffusion Equation with JFNK Algorithm[J]. Nuclear Power Engineering, 2015, 36(S2): 17-19. doi: 10.13832/j.jnpe.2015.S2.0017
    [14]YANG Junyun, XIAO Gang, YING Yangjun. A Monte Carlo Method for Solving Point Reactor Kinetics Equation[J]. Nuclear Power Engineering, 2015, 36(6): 4-9. doi: 10.13832/j.jnpe.2015.06.0004
    [15]Cai Yun, Li Qing, Wang Kan. Application of Matrix Exponential Rational Approximation in Point Reactor Kinetics[J]. Nuclear Power Engineering, 2014, 35(S2): 179-182. doi: 10.13832/j.jnpe.2014.S2.0179
    [16]Deng Zhihong, Sun Yuliang, Li Fu, Rizwan-uddin. Application of Diagonally Implicit Runge-Kutta Method for Solving Time-Dependent Convection-Diffusion Equation[J]. Nuclear Power Engineering, 2014, 35(1): 5-9.
    [17]Zhuang Kun, Cao Liangzhi, ZhenG Youqi, Wu Hongchun. Development of Neutron Kinetic Code for Molten Salt Reactors[J]. Nuclear Power Engineering, 2014, 35(S2): 183-185. doi: 10.13832/j.jnpe.2014.S2.0183
    [18]XU Xiao, JIN Ting, YANG Jingchao. Theory Resolution of Extraction-Insertion Force for Irradiation Capsule[J]. Nuclear Power Engineering, 2014, 35(2): 146-149.
    [19]SHEN Xiaoyao. Study on Dynamic Lifting Characteristics of Control Rod Drive Mechanism[J]. Nuclear Power Engineering, 2012, 33(1): 51-55.
    [20]HE Xiaoqiang, YU Hongxing, LI Feng, JIANG Guangming. A Cladding Oxidation Model Based on Diffusion Equations[J]. Nuclear Power Engineering, 2012, 33(4): 44-49.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040100200300400
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.1 %FULLTEXT: 8.1 %META: 87.8 %META: 87.8 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %三明: 0.2 %三明: 0.2 %三门峡: 0.2 %三门峡: 0.2 %上海: 0.3 %上海: 0.3 %丽水: 2.3 %丽水: 2.3 %保定: 0.3 %保定: 0.3 %六安: 0.7 %六安: 0.7 %包头: 0.3 %包头: 0.3 %北京: 1.2 %北京: 1.2 %十堰: 0.3 %十堰: 0.3 %南京: 0.2 %南京: 0.2 %南平: 0.3 %南平: 0.3 %南通: 0.2 %南通: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 1.0 %台州: 1.0 %合肥: 0.2 %合肥: 0.2 %吉林: 1.2 %吉林: 1.2 %咸阳: 1.2 %咸阳: 1.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 1.0 %嘉兴: 1.0 %大连: 0.7 %大连: 0.7 %天津: 0.2 %天津: 0.2 %宁德: 0.5 %宁德: 0.5 %宁波: 0.8 %宁波: 0.8 %安康: 0.8 %安康: 0.8 %宜春: 0.2 %宜春: 0.2 %宿迁: 1.2 %宿迁: 1.2 %山景城: 0.3 %山景城: 0.3 %常德: 0.8 %常德: 0.8 %广州: 1.3 %广州: 1.3 %开封: 0.2 %开封: 0.2 %张家口: 4.9 %张家口: 4.9 %徐州: 0.5 %徐州: 0.5 %德州: 0.3 %德州: 0.3 %成都: 1.0 %成都: 1.0 %扬州: 1.2 %扬州: 1.2 %抚州: 1.5 %抚州: 1.5 %文昌: 0.7 %文昌: 0.7 %无锡: 0.3 %无锡: 0.3 %日照: 0.7 %日照: 0.7 %朝阳: 1.3 %朝阳: 1.3 %杭州: 1.2 %杭州: 1.2 %枣庄: 0.3 %枣庄: 0.3 %榆林: 0.3 %榆林: 0.3 %武汉: 0.5 %武汉: 0.5 %汕头: 1.3 %汕头: 1.3 %江门: 0.7 %江门: 0.7 %池州: 0.7 %池州: 0.7 %沈阳: 0.5 %沈阳: 0.5 %泉州: 1.0 %泉州: 1.0 %泰州: 0.3 %泰州: 0.3 %泸州: 0.5 %泸州: 0.5 %济南: 0.5 %济南: 0.5 %淮北: 0.2 %淮北: 0.2 %淮南: 0.2 %淮南: 0.2 %淮安: 0.7 %淮安: 0.7 %深圳: 0.5 %深圳: 0.5 %温州: 0.2 %温州: 0.2 %渭南: 0.7 %渭南: 0.7 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.7 %湘潭: 0.7 %湘西: 0.7 %湘西: 0.7 %漯河: 0.3 %漯河: 0.3 %漳州: 0.5 %漳州: 0.5 %珠海: 0.7 %珠海: 0.7 %盐城: 0.3 %盐城: 0.3 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.8 %福州: 0.8 %秦皇岛: 0.7 %秦皇岛: 0.7 %绍兴: 0.5 %绍兴: 0.5 %自贡: 0.2 %自贡: 0.2 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %荆州: 0.2 %荆州: 0.2 %荆门: 1.2 %荆门: 1.2 %莆田: 0.3 %莆田: 0.3 %营口: 1.2 %营口: 1.2 %葫芦岛: 0.8 %葫芦岛: 0.8 %蚌埠: 0.7 %蚌埠: 0.7 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.3 %衢州: 0.3 %襄阳: 1.7 %襄阳: 1.7 %西宁: 1.8 %西宁: 1.8 %西安: 4.0 %西安: 4.0 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 0.3 %贵阳: 0.3 %辽阳: 0.2 %辽阳: 0.2 %运城: 0.8 %运城: 0.8 %连云港: 0.5 %连云港: 0.5 %通化: 0.2 %通化: 0.2 %邵阳: 0.3 %邵阳: 0.3 %郴州: 1.0 %郴州: 1.0 %重庆: 1.0 %重庆: 1.0 %金华: 1.7 %金华: 1.7 %铁岭: 1.3 %铁岭: 1.3 %锦州: 0.5 %锦州: 0.5 %长沙: 0.2 %长沙: 0.2 %阜阳: 0.2 %阜阳: 0.2 %防城港: 0.2 %防城港: 0.2 %随州: 0.5 %随州: 0.5 %雅安: 0.3 %雅安: 0.3 %鞍山: 3.4 %鞍山: 3.4 %香港: 1.3 %香港: 1.3 %鹰潭: 0.2 %鹰潭: 0.2 %黄冈: 1.7 %黄冈: 1.7 %黄南: 0.3 %黄南: 0.3 %黄山: 0.3 %黄山: 0.3 %其他三明三门峡上海丽水保定六安包头北京十堰南京南平南通厦门台州合肥吉林咸阳哈尔滨哥伦布嘉兴大连天津宁德宁波安康宜春宿迁山景城常德广州开封张家口徐州德州成都扬州抚州文昌无锡日照朝阳杭州枣庄榆林武汉汕头江门池州沈阳泉州泰州泸州济南淮北淮南淮安深圳温州渭南湖州湘潭湘西漯河漳州珠海盐城盘锦石家庄福州秦皇岛绍兴自贡舟山芒廷维尤芝加哥苏州荆州荆门莆田营口葫芦岛蚌埠衡阳衢州襄阳西宁西安诺沃克贵阳辽阳运城连云港通化邵阳郴州重庆金华铁岭锦州长沙阜阳防城港随州雅安鞍山香港鹰潭黄冈黄南黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (522) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return