Citation: | Zeng Fulin, Zhang Xiaolong, Zhao Pengcheng. Study on Neutron Diffusion Calculation Method Based on hp-VPINN[J]. Nuclear Power Engineering, 2024, 45(2): 53-62. doi: 10.13832/j.jnpe.2024.02.0053 |
[1] |
杨戴博,李昆,黎刚,等. “华龙一号”堆芯中子通量测量系统设计[J]. 核电子学与探测技术,2021, 41(01): 146-150.
|
[2] |
谢仲生,曹良志,张少泓. 核反应堆物理分析[M]. 第五版. 西安: 西安交通大学出版社,2020: 69-90,89-91.
|
[3] |
周琴. 堆芯安全性在线分析[D]. 哈尔滨: 哈尔滨工程大学,2014.
|
[4] |
余红星,李文杰,柴晓明,等. 数字反应堆发展与挑战[J]. 核动力工程,2020, 41(4): 1-7.
|
[5] |
龚禾林,陈长,李庆,等. 基于物理指引和数据增强的反应堆物理运行数字孪生研究[J]. 核动力工程,2021, 42(S2): 48-53.
|
[6] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[7] |
刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
|
[8] |
WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234
|
[9] |
YANG Y, GONG H L, ZHANG S Q, et al. A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems[J]. Annals of Nuclear Energy, 2023, 183: 109656. doi: 10.1016/j.anucene.2022.109656
|
[10] |
PRANTIKOS K, TSOUKALAS L H, HEIFETZ A. Physics-informed neural network solution of point kinetics equations for a nuclear reactor digital twin[J]. Energies, 2022, 15(20): 7697. doi: 10.3390/en15207697
|
[11] |
ELHAREEF M H, WU Z Y. Physics-informed neural network method and application to nuclear reactor calculations: a pilot study[J]. Nuclear Science and Engineering, 2023, 197(4): 601-622. doi: 10.1080/00295639.2022.2123211
|
[12] |
KHARAZMI E, ZHANG Z Q, KARNIADAKIS G E M. hp-VPINNs: variational physics-informed neural networks with domain decomposition[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374: 113547. doi: 10.1016/j.cma.2020.113547
|
[13] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
|
[14] |
刘欣. 无网格方法[M]. 北京: 科学出版社,2011: 45-47.
|
[15] |
马丁 T. 哈根,霍华德 B. 德姆斯,马克 H. 比勒,等. 神经网络设计[M]. 章毅,译. 第二版. 北京: 机械工业出版社,2018: 1-25.
|
[16] |
MISHKIN D, SERGIEVSKIY N, MATAS J. Systematic evaluation of convolution neural network advances on the Imagenet[J]. Computer Vision and Image Understanding, 2017, 161: 11-19. doi: 10.1016/j.cviu.2017.05.007
|
[17] |
HAGEMAN L A, YASINSKY J B. Comparison of alternating-direction time-differencing methods with other implicit methods for the solution of the neutron group-diffusion equations[J]. Nuclear Science and Engineering, 1969, 38(1): 8-32. doi: 10.13182/NSE38-8
|
[18] |
IMRON M. Development and verification of open reactor simulator ADPRES[J]. Annals of Nuclear Energy, 2019, 133: 580-588. doi: 10.1016/j.anucene.2019.06.049
|
[19] |
GE J, ZHANG D L, TIAN W X, et al. Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code[J]. Progress in Nuclear Energy, 2015, 85: 366-374. doi: 10.1016/j.pnucene.2015.07.012
|