Advance Search
Volume 45 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
Tian Jiaming, Wang Yueshe, Li Biao, Zou Lin. Simulation Study on Transport Characteristics of Radioactive Aerosol in Containment[J]. Nuclear Power Engineering, 2024, 45(2): 88-95. doi: 10.13832/j.jnpe.2024.02.0088
Citation: Tian Jiaming, Wang Yueshe, Li Biao, Zou Lin. Simulation Study on Transport Characteristics of Radioactive Aerosol in Containment[J]. Nuclear Power Engineering, 2024, 45(2): 88-95. doi: 10.13832/j.jnpe.2024.02.0088

Simulation Study on Transport Characteristics of Radioactive Aerosol in Containment

doi: 10.13832/j.jnpe.2024.02.0088
  • Received Date: 2023-05-26
  • Rev Recd Date: 2024-01-09
  • Publish Date: 2024-04-12
  • In order to find out the transport characteristics of radioactive aerosol in a serious accident under the actual containment size, the spatial distribution of radioactive aerosol in a serious accident was simulated by using the coupling of computational fluid dynamics and particle swarm equilibrium equation, and the effects of different coalescence and deposition mechanisms on the aerosol transport process are quantitatively analyzed. The results show that the interaction among aerosol particulates with a particle size smaller than 0.1 μm are mainly driven by Brownian coalescence, while those larger than 10 μm are dependent mainly on turbulent inertial coalescence, and those between the two sizes are dominated by both of Brownian coalescence and turbulent coalescence (turbulent inertial coalescence and turbulent shear coalescence). For the deposition phenomenon, the aerosols with particle size less than 0.1 μm rely mainly on Brownian deposition, while those larger than 0.1 μm are mainly affected by gravity deposition. It is found that the average coalescence velocity of turbulent coalescence is 2.99 times that of Brownian coalescence, and the average deposition rate of Brownian deposition is 1.38 times that of gravitational deposition. This study provides a solution for the selection of radioactive aerosol removal technology under the actual containment size.

     

  • loading
  • [1]
    苏光辉,田文喜,张亚培,等. 轻水堆核电厂严重事故现象学[M]. 北京: 国防工业出版社,2014: 7-14.
    [2]
    ALLELEIN H J, AUVINEN A, BALL J, et al. State-of-the-art report on nuclear aerosols: NEA/CSNI/R (2009)5[R]. France: OECD/NEA, 2009.
    [3]
    LEE K W, CHEN J, GIESEKE J A. Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime[J]. Aerosol Science and Technology, 1984, 3(1): 53-62. doi: 10.1080/02786828408958993
    [4]
    刘鹤欣,谭厚章,杜勇乐,等. 亚微米颗粒湍流团聚特性的实验研究[J]. 工程热物理学报,2020, 41(3): 763-770.
    [5]
    SLAMA M, SHAKER M O, ALY R, et al. Applications of aerosol model in the reactor containment[J]. Journal of Radiation Research and Applied Sciences, 2014, 7(4): 499-505. doi: 10.1016/j.jrras.2014.08.007
    [6]
    RAJAGOPAL P S, JOSHI M, SHINDE J, et al. Numerical modeling of aerosol transport and dynamics[M]//RUNCHAL A K, GUPTA A K, KUSHARI A, et al. Energy for Propulsion: A Sustainable Technologies Approach. Singapore: Springer, 2018: 345-364.
    [7]
    陶俊,咸春宇,陈军,等. “华龙一号”安全壳内气溶胶重力沉降特性研究[J]. 核科学与工程,2020, 40(5): 751-756. doi: 10.3969/j.issn.0258-0918.2020.05.004
    [8]
    LI J S, ZHANG B, GAO P C, et al. Improvement and validation of aerosol models for natural deposition mechanism in reactor containment[J]. Nuclear Engineering and Technology, 2023, 55(7): 2628-2641. doi: 10.1016/j.net.2023.04.014
    [9]
    LIU H X, YANG F X, LI Z H, et al. Simulation and optimization of the particle agglomeration in an aerodynamic agglomerator using a CFD-PBM coupled model[J]. International Journal of Modern Physics C, 2020, 31(9): 2050121. doi: 10.1142/S0129183120501211
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (18) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return