Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Zhang Teng, Ma Xubo, Hu Kui, Jia Guanqun, Zhao Chen, Wang Lianjie. Analysis of Photon Heating Behavior in Fast Reactor Based on NGAMMA[J]. Nuclear Power Engineering, 2024, 45(3): 20-27. doi: 10.13832/j.jnpe.2024.03.0020
Citation: Zhang Teng, Ma Xubo, Hu Kui, Jia Guanqun, Zhao Chen, Wang Lianjie. Analysis of Photon Heating Behavior in Fast Reactor Based on NGAMMA[J]. Nuclear Power Engineering, 2024, 45(3): 20-27. doi: 10.13832/j.jnpe.2024.03.0020

Analysis of Photon Heating Behavior in Fast Reactor Based on NGAMMA

doi: 10.13832/j.jnpe.2024.03.0020
  • Received Date: 2023-07-27
  • Rev Recd Date: 2023-08-28
  • Publish Date: 2024-06-13
  • In order to improve the accuracy of photon heat release calculation for fast reactors, this paper studies the theory of high-precision photon cross-section production and the method of photon heat release calculation, and a library of photon cross-section related to the problem based on the self-developed photon cross-section processing code NGAMMA is generated. The cross-section library mainly includes neutron-photon ratio kinetic energy release (KERMA) factor, photo-atomic reaction cross-section, prompt photon production cross-section, delayed photon production cross-section and other data. The library is verified using the fast reactor benchmark problem ZPPR-9, and the computational results show that: (1) the computational accuracy of using the newly developed 94-group photon cross-section library to obtain the problem-related photon cross-section library by merging groups is significantly improved over the previous computational accuracy of directly generating the 21-group photon cross-section by utilizing NJOY. The relative deviation of the calculated results of photon heat release from the Monte Carlo results in the blanket region is reduced from −7.88% to less than 3%, and the relative deviation in the reflector region is reduced from 14.76% to 5.05%; (2) Consideration of delayed photon significantly affects the photon heat release, and compared with the consideration of prompt photon only, the consideration of delayed photon leads to an improvement of photon heat release in the inner and outer core regions by 33.11%; (3) The approximate calculation of the heat release of delayed photons by using the scaling factor method is in good agreement with the exact calculation results, and the relative deviation in each region is within ±2%

     

  • loading
  • [1]
    YANG W S. Fast reactor physics and computational methods[J]. Nuclear Engineering and Technology, 2012, 44(2): 177-198. doi: 10.5516/NET.01.2012.504
    [2]
    ROHANDA A, WARIS A, KURNIADI R, et al. Validation and improvement of gamma heating calculation methods for the G. A. Siwabessy multipurpose reactor[J]. Nuclear Science and Techniques, 2020, 31(11): 112. doi: 10.1007/s41365-020-00824-4
    [3]
    RULLHUSEN P. Nuclear data needs for generation IV nuclear energy systems[M]. New Jersey: World Scientific, 2006: 32-56.
    [4]
    PARK H, JEON B K, YANG W S, et al. Verification and validation tests of gamma library of MC2-3 for coupled neutron and gamma heating calculation[J]. Annals of Nuclear Energy, 2020, 146: 107609. doi: 10.1016/j.anucene.2020.107609
    [5]
    陈建达,郑友琦,杜夏楠,等. 基于SARAX-LAVENDER的快堆光子释热行为分析[J]. 现代应用物理,2021, 12(1): 10210.
    [6]
    ZHANG T, MA X B, JIA G Q, et al. Development and verification of neutron and photon ultrafine group library for fast reactor physical calculation[C]//American Society of Mechanical Engineers. Proceedings of 29th International Conference on Nuclear Engineering. Online, August 8–12, 2022.
    [7]
    DENG P, JEON B K, PARK H, et al. Coupled neutron and gamma heating calculation based on VARIANT transport solutions[J]. Nuclear Science and Engineering, 2019, 193(12): 1310-1338. doi: 10.1080/00295639.2019.1621617
    [8]
    JIA X Q, ZHENG Y Q, DU X N, et al. Verification of SARAX code system in the reactor core transient calculation based on the simplified EBR-II benchmark[J]. Nuclear Engineering and Technology, 2022, 54(5): 1813-1824. doi: 10.1016/j.net.2021.10.045
    [9]
    HU K, MA X B, ZHANG T, et al. MGGC2.0: a preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library[J]. Nuclear Engineering and Technology, 2023, 55(8): 2785-2796. doi: 10.1016/j.net.2023.05.005
    [10]
    LÜTHI A, CHAWLA R, RIMPAULT G. Improved gamma-heating calculational methods for fast reactors and their validation for plutonium-burning configurations[J]. Nuclear Science and Engineering, 2001, 138(3): 233-255. doi: 10.13182/NSE01-A2211
    [11]
    PANIZO S, ÁLVAREZ-VELARDE F. Evaluation of the impact of the nuclear data library cinder. dat in MCNP burn-up calculations[J]. Progress in Nuclear Energy, 2023, 155: 104503. doi: 10.1016/j.pnucene.2022.104503
    [12]
    祖铁军,徐宁,尹文,等. 核数据处理软件NECP-Atlas中的光子相关数据计算方法研究[J]. 原子能科学技术, 2022, 56(5): 969-977.

    祖铁军, 徐宁, 尹文, 等. 核数据处理软件NECP-Atlas中的光子相关数据计算方法研究[J]. 原子能科学技术, 2022, 56(5): 969-977.
    [13]
    CHADWICK M B, HERMAN M, OBLOŽINSKÝ P, et al. ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data[J]. Nuclear Data Sheets, 2011, 112(12): 2887-2996. doi: 10.1016/j.nds.2011.11.002
    [14]
    PARK H, YANG W S, SMITH M A, et al. Verification and validation tests of the Gamma library of the ARC software package (Rev. 1): ANL/NSE-19/22 Rev. 1[R]. Argonne: Argonne National Laboratory, 2022.
    [15]
    JEON B K, YANG W S, LEE C H. Improved gamma yield and interaction cross-section libraries of MC2-3[C]. Las Vegas: Transactions of the American Nuclear Society, 2016(115): 1299-1302.
    [16]
    LEE C. Verification of the MC2-3 Gamma library: ANL-18/28[R]. Argonne: Argonne National Laboratory, 2018.
    [17]
    SALVATORES M, PALMIOTTI G, ALIBERTI G, et al. Methods and issues for the combined use of integral experiments and covariance data: results of a NEA international collaborative study[J]. Nuclear Data Sheets, 2014, 118: 38-71. doi: 10.1016/j.nds.2014.04.005
    [18]
    黄自锋. 共振峰重构与快堆超精细能群截面制作方法研究[D]. 北京: 华北电力大学(北京),2021.
    [19]
    ALCOUFFE R E, BRINKLEY F W, MARR D R, et al. User’s guide for TWODANT: a code package for two-dimensional, diffusion-accelerated, neutral-particle transport: LA-10049-M[R]. Los Alamos: Los Alamos National Laboratory, 1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (53) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return