Citation: | Qi Feipeng, Liu Zhenhai, Yin Chunyu, Luo Jian, Liu Yong, Qian Libo, Zhou Yi, Wang Haoyu, Chen Ping, Li Quan. Development and Preliminary Verification of MCAT Platform for Fuel Element Multi-physics Coupling Analysis[J]. Nuclear Power Engineering, 2024, 45(3): 28-36. doi: 10.13832/j.jnpe.2024.03.0028 |
[1] |
CACUCI D G. Handbook of nuclear engineering: Vol. 1: nuclear engineering fundamentals; Vol. 2: reactor design; Vol. 3: reactor analysis; Vol. 4: reactors of generations III and IV; Vol. 5: fuel cycles, decommissioning, waste disposal and safeguards[M]. New York: Springer, 2010: 1551-1582.
|
[2] |
VAN UFFELEN P, SUZUKI M. 3.19 - Oxide fuel performance modeling and simulations[M]//KONINGS R J M. Comprehensive Nuclear Materials. Amsterdam: Elsevier Science, 2012: 535-577.
|
[3] |
LASSMANN K, O’CARROLL C, VAN DE LAAR J, et al. The radial distribution of plutonium in high burnup UO2 fuels[J]. Journal of Nuclear Materials, 1994, 208(3): 223-231. doi: 10.1016/0022-3115(94)90331-X
|
[4] |
SOBA A, DENIS A, ROMERO L, et al. A high burnup model developed for the DIONISIO code[J]. Journal of Nuclear Materials, 2013, 433(1-3): 160-166. doi: 10.1016/j.jnucmat.2012.08.016
|
[5] |
YU J K, LEE H, LEMAIRE M, et al. Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system[J]. Annals of Nuclear Energy, 2020, 138: 107192. doi: 10.1016/j.anucene.2019.107192
|
[6] |
GARCÍA M, TUOMINEN R, GOMMLICH A, et al. A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors[J]. Annals of Nuclear Energy, 2020, 139: 107213. doi: 10.1016/j.anucene.2019.107213
|
[7] |
YU J K, LEE H, LEMAIRE M, et al. MCS based neutronics/thermal-hydraulics/fuel-performance coupling with CTF and FRAPCON[J]. Computer Physics Communications, 2019, 238: 1-18. doi: 10.1016/j.cpc.2019.01.001
|
[8] |
HALES J D, TONKS M R, GLEICHER F N, et al. Advanced multiphysics coupling for LWR fuel performance analysis[J]. Annals of Nuclear Energy, 2015, 84: 98-110. doi: 10.1016/j.anucene.2014.11.003
|
[9] |
CHANARON B, AHNERT C, CROUZET N, et al. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project[J]. Annals of Nuclear Energy, 2015, 84: 166-177. doi: 10.1016/j.anucene.2014.12.013
|
[10] |
GASTON D R, PERMANN C J, PETERSON J W, et al. Physics-based multiscale coupling for full core nuclear reactor simulation[J]. Annals of Nuclear Energy, 2015, 84: 45-54. doi: 10.1016/j.anucene.2014.09.060
|
[11] |
SUIKKANEN H, RINTALA V, SCHUBERT A, et al. Development of coupled neutronics and fuel performance analysis capabilities between Serpent and TRANSURANUS[J]. Nuclear Engineering and Design, 2020, 359: 110450. doi: 10.1016/j.nucengdes.2019.110450
|
[12] |
YU J K, LEE H, KIM H, et al. Coupling of FRAPCON for fuel performance analysis in the Monte Carlo code MCS[J]. Computer Physics Communications, 2020, 251: 106748. doi: 10.1016/j.cpc.2019.03.001
|
[13] |
COMSOL, Inc. COMSOL Reference: COMSOL multiphysics reference manual[Z]. 2018.
|
[14] |
WANG K, LI Z G, SHE D, et al. RMC - A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
|
[15] |
黄涛,邓坚,丁书华,等. 先进反应堆系统分析程序(ARSAC)LOCA类整体性效应实验验证[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国科学院近代物理研究所,2019.
|
[16] |
BERNARD L C, JACOUD J L, VESCO P. An efficient model for the analysis of fission gas release[J]. Journal of Nuclear Materials, 2002, 302(2-3): 125-134. doi: 10.1016/S0022-3115(02)00793-6
|
[17] |
梁金刚. 反应堆蒙卡程序RMC大规模计算数据并行方法研究[D]. 北京: 清华大学,2015.
|
[18] |
SENECAL J P, JI W. Comparison of novel multiphysics coupling methods in MOOSE[C]//Transactions of the American Nuclear Society, Vol. 113. Washington, D. C. , 2015.
|
[19] |
谢仲生,吴宏春,张少泓. 核反应堆物理分析[M]. 西安: 西安交通大学出版社,2004: 202-205.
|