Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Jiang Dianqiang, Zhang Dalin, Chen Kailong, Tian Wenxi, Qiu Suizheng, Su Guanghui. Numerical Study on Laminar Mixed Convective Heat Transfer of Molten Salt along Helical Cruciform Single-Rod[J]. Nuclear Power Engineering, 2024, 45(3): 76-84. doi: 10.13832/j.jnpe.2024.03.0076
Citation: Jiang Dianqiang, Zhang Dalin, Chen Kailong, Tian Wenxi, Qiu Suizheng, Su Guanghui. Numerical Study on Laminar Mixed Convective Heat Transfer of Molten Salt along Helical Cruciform Single-Rod[J]. Nuclear Power Engineering, 2024, 45(3): 76-84. doi: 10.13832/j.jnpe.2024.03.0076

Numerical Study on Laminar Mixed Convective Heat Transfer of Molten Salt along Helical Cruciform Single-Rod

doi: 10.13832/j.jnpe.2024.03.0076
  • Received Date: 2023-07-27
  • Rev Recd Date: 2024-03-03
  • Publish Date: 2024-06-13
  • The concept for FuSTAR, a small fluoride salt-cooled high-temperature reactor, was proposed by Xi'an Jiaotong University, and the helical cruciform fuel assembly is adopted for FuSTAR. In order to study the mixed convection heat transfer characteristics of molten salt in the helical cruciform fuel assembly, a helical cruciform single-rod channel model is established. The computational fluid dynamics (CFD) method is used to verify the numerical calculation model with experimental data. The difference between the numerical calculation value and the experimental measurement value of 94% wall temperature data point is within ±5℃, and the relative error between the numerical calculation value and the experimental measurement value of 94% average heat transfer coefficient data point is −15%~15%. The results of mixed convection heat transfer of molten salt along helical cruciform single-rod show that the influence of natural convection on the whole mixed convection heat transfer is related to inlet temperature and heat flux. The effect of natural convection on overall convective heat transfer can be more accurately evaluated by Φ/Gz (Φ is the combination variable of dimensionless number of natural convection, and Gz is Graetz number). In addition, the correlations of laminar mixed convection heat transfer of molten salt along helical cruciform single-rod at 30≤Re≤500, 6≤Pr≤26, 600≤Gr≤42000 are fitted(Re is Reynolds number, Pr is Prandtl number, and Gr is Grashof number).

     

  • loading
  • [1]
    ZHANG D, LIU L, LIU M, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848. doi: 10.1002/er.3979
    [2]
    JIANG D, ZHANG D, LI X, et al. Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112345. doi: 10.1016/j.rser.2022.112345
    [3]
    张大林,秦浩,王式保,等. 固有安全一体化小型氟盐冷却高温堆初步概念设计研究[J]. 中国基础科学,2021, 23(4): 15-20. doi: 10.3969/j.issn.1009-2412.2021.04.003
    [4]
    MALONE J, TOTEMEIER A, SHAPIRO N, et al. Lightbridge Corporation’s Advanced Metallic Fuel for Light Water Reactors[J]. Nuclear Technology, 2012, 180(3): 437-442. doi: 10.13182/NT12-A15354
    [5]
    FENG D. Innovative Fuel Designs for High Power Density Pressurized Water Reactor[D]. Massachusetts: Massachusetts Institute of Technology, 2005.
    [6]
    MOHANTA L, CHEUNG F B, BAJOREK S M, et al. Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids[J]. Nuclear Engineering and Design, 2017, 312: 99-105. doi: 10.1016/j.nucengdes.2016.07.023
    [7]
    SUNG-HO K, EL-GENK M S. Heat transfer experiments for low flow of water in rod bundles[J]. International Journal of Heat and Mass Transfer, 1989, 32(7): 1321-1336. doi: 10.1016/0017-9310(89)90032-X
    [8]
    CONBOY T M. Assessment of Helical-Cruciform Fuel Rods for High Power Density LWRs[D]. Massachusetts: Massachusetts Institute of Technology, 2010.
    [9]
    张琦,顾汉洋,肖瑶,等. 5x5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436
    [10]
    ZHANG Q, LIU L, XIAO Y, et al. Experimental study on the transverse mixing of 5 × 5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
    [11]
    CONG T, ZHANG R, WANG B, et al. Single-phase flow in helical cruciform fuel assembly with conjugate heat transfer[J]. Progress in Nuclear Energy, 2022, 147: 104199. doi: 10.1016/j.pnucene.2022.104199
    [12]
    JIANG D, ZHANG D, TIAN W, et al. Numerical study on transverse mixing characteristics of flow sweeping in helical cruciform rod bundle[J]. Applied Thermal Engineering, 2022: 119935.
    [13]
    JIANG D, DALIN ZHANG, WENXI TIAN, et al. Experimental study on flow and heat transfer of medium-Prandtl-number fluid along a hexagonal helical cruciform seven-rods[J]. International Journal of Heat and Mass Transfer, 2024, 224: 1-14.
    [14]
    JIANG D, ZHANG D, CHEN K, et al. Experimental Study on Flow and Heat Transfer of High Prandtl Number Fluid along Helical Cruciform Single Rod[C]//International Conference on Nuclear Engineering, Proceedings. Kyoto: American Society of Mechanical Engineers (ASME), 2023.
    [15]
    ZWEIBAUM N. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors[D]. California: University of California, Berkeley, 2015.
    [16]
    JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. doi: 10.1016/0142-727X(89)90049-0
    [17]
    LIU D, GU H. Mixed convection heat transfer in a 5 × 5 rod bundles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 914-921. doi: 10.1016/j.ijheatmasstransfer.2017.05.113
    [18]
    LI J, XIAO Y, GU H, et al. Development of a correlation for mixed convection heat transfer in rod bundles[J]. Annals of Nuclear Energy, 2021, 155: 108151. doi: 10.1016/j.anucene.2021.108151
    [19]
    CHURCHILL S W. A comprehensive correlating equation for laminar, assisting, forced and free convection[J]. AIChE Journal, 1977, 23(1): 10-16. doi: 10.1002/aic.690230103
    [20]
    EL-GENK M S, SU B, GUO Z. Experimental studies of forced, combined and natural convection of water in vertical nine-rod bundles with a square lattice[J]. International Journal of Heat and Mass Transfer, 1993, 36(9): 2359-2374. doi: 10.1016/S0017-9310(05)80120-6
    [21]
    OLIVER D R. The effect of natural convection on viscous-flow heat transfer in horizontal tubes[J]. Chemical Engineering Science, 1962, 17(5): 335-350. doi: 10.1016/0009-2509(62)80035-9
    [22]
    ZHANG S. Mixed convective heat transfer of medium-Prandtl-number fluids in horizontal circular tubes[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122740. doi: 10.1016/j.ijheatmasstransfer.2022.122740
    [23]
    A. R. BROWN, M. A. THOMAS. Combined Free and Forced Convection Heat Transfer for Laminar Flow in Horizontal Tube[J] Journal Mechanical Engineering Science, 7(4): 440-448.
    [24]
    LU D, ZHANG Y, FU X, et al. Experimental investigation on natural convection heat transfer characteristics of C-shape heating rods bundle used in PRHR HX[J]. Annals of Nuclear Energy, 2016, 98: 226-238. doi: 10.1016/j.anucene.2016.08.009
    [25]
    LIU W, PENG S, JIANG G, et al. Development and assessment of a new rod-bundle CHF correlation for China fuel assemblies[J]. Annals of Nuclear Energy, 2020, 138: 107175. doi: 10.1016/j.anucene.2019.107175
    [26]
    杨世铭,陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社,2006: 273-274.
    [27]
    STEVENS R J A M, LOHSE D, VERZICCO R. Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection[J]. Journal of Fluid Mechanics, 2011, 688: 31-43. doi: 10.1017/jfm.2011.354
    [28]
    MERZARI E, FISCHER P, NINOKATA H. Numerical Simulation of the Flow in a Toroidal Thermosiphon[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D. Hamamatsu, Japan: ASMEDC, 2011: 1549-1560.
    [29]
    ROMATOSKI R R, HU L W. Fluoride salt coolant properties for nuclear reactor applications: A review[J]. Annals of Nuclear Energy, 2017, 109: 635-647. doi: 10.1016/j.anucene.2017.05.036
    [30]
    秋穗正,张大林,王成龙. 熔盐堆[M]. 西安: 西安交通大学出版社,2019: 48.
    [31]
    LIU L, ZHANG D, LI L, et al. Experimental investigation of flow and convective heat transfer on a high-Prandtl-number fluid through the nuclear reactor pebble bed core[J]. Applied Thermal Engineering, 2018, 145: 48-57. doi: 10.1016/j.applthermaleng.2018.09.017
    [32]
    OSBORNE D G, INCROPERA F P. Experimental study of mixed convection heat transfer for transitional and turbulent flow between horizontal, parallel plates[J]. International Journal of Heat and Mass Transfer, 1985, 28(7): 1337-1344. doi: 10.1016/0017-9310(85)90164-4
    [33]
    LI W, FENG Z Z. Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, Part II: Correlations[J]. International Journal of Heat and Mass Transfer, 2013, 65: 928-935. doi: 10.1016/j.ijheatmasstransfer.2013.07.006
    [34]
    SHANNON R L, DEPEW C A. Forced Laminar Flow Convection in a Horizontal Tube With Variable Viscosity and Free-Convection Effects[J]. Journal of Heat Transfer, 1969, 91(2): 251-258. doi: 10.1115/1.3580137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (29) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return