Citation: | Xu Yifan, Peng Minjun, Xia Genglei. Reduced Order Modeling of Once-through Steam Generator Based on Dynamic Mode Decomposition[J]. Nuclear Power Engineering, 2024, 45(3): 85-94. doi: 10.13832/j.jnpe.2024.03.0085 |
[1] |
XIA G L, PENG M J, DU X. Research of flow instability in OTSG under low load conditions[J]. Annals of Nuclear Energy, 2015, 75: 421-427. doi: 10.1016/j.anucene.2014.08.059
|
[2] |
AVRAMOVA M N, IVANOV K N. Verification, validation and uncertainty quantification in multi-physics modeling for nuclear reactor design and safety analysis[J]. Progress in Nuclear Energy, 2010, 52(7): 601-614. doi: 10.1016/j.pnucene.2010.03.009
|
[3] |
IVANOV K, AVRAMOVA M. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis[C]//ICAPP 2007 - International Congress on Advances in Nuclear Power Plants. Paris, France: SFEN, 2007.
|
[4] |
FICK L, MADAY Y, PATERA A T, et al. A stabilized POD model for turbulent flows over a range of Reynolds numbers: optimal parameter sampling and constrained projection[J]. Journal of Computational Physics, 2018, 371: 214-243. doi: 10.1016/j.jcp.2018.05.027
|
[5] |
MANTHEY R, KNOSPE A, LANGE C, et al. Reduced order modeling of a natural circulation system by proper orthogonal decomposition[J]. Progress in Nuclear Energy, 2019, 114: 191-200. doi: 10.1016/j.pnucene.2019.03.010
|
[6] |
SMITH T R, MOEHLIS J, HOLMES P. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial[J]. Nonlinear Dynamics, 2005, 41(1-3): 275-307. doi: 10.1007/s11071-005-2823-y
|
[7] |
LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066
|
[8] |
GERMAN P, TANO M, FIORINA C, et al. GeN-ROM—An OpenFOAM®-based multiphysics reduced-order modeling framework for the analysis of Molten Salt Reactors[J]. Progress in Nuclear Energy, 2022, 146: 104148. doi: 10.1016/j.pnucene.2022.104148
|
[9] |
ZAREI M. On a reduced order modeling of the nuclear reactor dynamics[J]. Applied Mathematics and Computation, 2021, 393: 125819. doi: 10.1016/j.amc.2020.125819
|
[10] |
SUN Y, YANG J H, WANG Y H, et al. A POD reduced-order model for resolving the neutron transport problems of nuclear reactor[J]. Annals of Nuclear Energy, 2020, 149: 107799. doi: 10.1016/j.anucene.2020.107799
|
[11] |
VALOCCHI G, TOMMASI J, RAVETTO P. Reduced order models in reactor kinetics: a comparison between point kinetics and multipoint kinetics[J]. Annals of Nuclear Energy, 2020, 147: 107702. doi: 10.1016/j.anucene.2020.107702
|
[12] |
ZHANG C Y, CHEN G. Fast solution of neutron transport SP3 equation by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 120: 707-714. doi: 10.1016/j.anucene.2018.06.042
|
[13] |
BUCHAN A G, CALLOO A A, GOFFIN M G, et al. A POD reduced order model for resolving angular direction in neutron/photon transport problems[J]. Journal of Computational Physics, 2015, 296: 138-157. doi: 10.1016/j.jcp.2015.04.043
|
[14] |
CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Current Science, 2000, 78(7): 808-817.
|
[15] |
BENNER P, GRIVET-TALOCIA S, QUARTERONI A, et al. Model order reduction: volume 2: snapshot-based methods and algorithms[M]. Boston: De Gruyter, 2020: 307-308.
|
[16] |
SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. doi: 10.1017/S0022112010001217
|
[17] |
NATHAN K J, STEVEN L B, BINGNI W B, et al. Dynamic mode decomposition: data-driven modeling of complex systems[M]. SIAM, 2016: 1.
|
[18] |
BRUNTON S L, KUTZ J N. Data-driven science and engineering: machine learning, dynamical systems, and control[M]. 2nd ed. Cambridge: Cambridge University Press, 2022: 281-283.
|
[19] |
TU J H. Dynamic mode decomposition: theory and applications[D]. Princeton: Princeton University, 2013.
|
[20] |
DI RONCO A, CAMMI A, GIACOBBO F, et al. Application of the dynamic mode decomposition approach to the dispersion of radioactive contaminants in air[C]//Proceedings of the 27th International Conference Nuclear Energy for New Europe (NENE 2018). Ljubljana. Nuclear Society of Slovenia. 2018: 1-8.
|
[21] |
DI RONCO A, INTROINI C, CERVI E, et al. Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core[J]. Nuclear Engineering and Design, 2020, 362: 110529. doi: 10.1016/j.nucengdes.2020.110529
|
[22] |
CHEN K K, TU J H, ROWLEY C W. Variants of dynamic mode decomposition: boundary condition, koopman, and fourier analyses[J]. Journal of Nonlinear Science, 2012, 22(6): 887-915. doi: 10.1007/s00332-012-9130-9
|
[23] |
SCHMID P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54: 225-254. doi: 10.1146/annurev-fluid-030121-015835
|
[24] |
PROCTOR J L, BRUNTON S L, KUTZ J N. Dynamic mode decomposition with control[J]. SIAM Journal on Applied Dynamical Systems, 2016, 15(1): 142-161. doi: 10.1137/15M1013857
|
[25] |
XIA G L, PENG M J, DU X. Calculation analysis on the natural circulation of a passive residual heat removal system for IPWR[J]. Annals of Nuclear Energy, 2014, 72: 189-197. doi: 10.1016/j.anucene.2014.02.018
|
[26] |
刘建阁,彭敏俊,张志俭,等. 套管式直流蒸汽发生器负荷跟随动态特性分析[J]. 原子能科学技术,2010, 44(2): 175-182.
|
[27] |
GENGLEI X, MINJUN P, XUE D. Analysis of load-following characteristics for an integrated pressurized water reactor[J]. International Journal of Energy Research, 2014, 38(3): 380-390. doi: 10.1002/er.3053
|
[28] |
GAVISH M, DONOHO D L. The optimal hard threshold for singular values is $ {4 / \sqrt{3}} $[J]. IEEE Transactions on Information Theory, 2014, 60(8): 5040-5053. doi: 10.1109/TIT.2014.2323359
|