Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Xu Yifan, Peng Minjun, Xia Genglei. Reduced Order Modeling of Once-through Steam Generator Based on Dynamic Mode Decomposition[J]. Nuclear Power Engineering, 2024, 45(3): 85-94. doi: 10.13832/j.jnpe.2024.03.0085
Citation: Xu Yifan, Peng Minjun, Xia Genglei. Reduced Order Modeling of Once-through Steam Generator Based on Dynamic Mode Decomposition[J]. Nuclear Power Engineering, 2024, 45(3): 85-94. doi: 10.13832/j.jnpe.2024.03.0085

Reduced Order Modeling of Once-through Steam Generator Based on Dynamic Mode Decomposition

doi: 10.13832/j.jnpe.2024.03.0085
  • Received Date: 2023-07-22
  • Rev Recd Date: 2023-10-14
  • Publish Date: 2024-06-13
  • The operation characteristics of once-through steam generator (OTSG) have an important influence on the safety of the reactor. The large-scale and refined simulation model provides high fidelity simulation results for the thermal hydraulic characteristics and safety analysis of OTSG, but it also challenges the computing resources. Dynamic Mode Decomposition with Control (DMDc) is a data-driven model order reduction (MOR) method, which can establish a low-dimensional and accurate input-output model for the system with control inputs on the basis of dynamic mode decomposition (DMD) to replace the high-fidelity model for fast calculation. Considering that the thermal parameters of OTSG, such as steam pressure, are affected by the reactor control system in actual operation, the full-order model established by RELAP5 is used to obtain the high-fidelity simulation results of the main thermal parameters of OTSG under the conditions of rapid load reduction and rapid load increase, and the reduced-order model (ROM) of OTSG is established based on DMDc. The results show that DMDc can extract the dynamic characteristics of OTSG under variable load conditions, and the maximum relative error between the calculation results of reduced-order model and the full-order model is less than 2%. In addition, the effects of DMDc and DMD methods on OTSG reduced-order modeling are compared, which proves the superiority of DMDc method.

     

  • loading
  • [1]
    XIA G L, PENG M J, DU X. Research of flow instability in OTSG under low load conditions[J]. Annals of Nuclear Energy, 2015, 75: 421-427. doi: 10.1016/j.anucene.2014.08.059
    [2]
    AVRAMOVA M N, IVANOV K N. Verification, validation and uncertainty quantification in multi-physics modeling for nuclear reactor design and safety analysis[J]. Progress in Nuclear Energy, 2010, 52(7): 601-614. doi: 10.1016/j.pnucene.2010.03.009
    [3]
    IVANOV K, AVRAMOVA M. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis[C]//ICAPP 2007 - International Congress on Advances in Nuclear Power Plants. Paris, France: SFEN, 2007.
    [4]
    FICK L, MADAY Y, PATERA A T, et al. A stabilized POD model for turbulent flows over a range of Reynolds numbers: optimal parameter sampling and constrained projection[J]. Journal of Computational Physics, 2018, 371: 214-243. doi: 10.1016/j.jcp.2018.05.027
    [5]
    MANTHEY R, KNOSPE A, LANGE C, et al. Reduced order modeling of a natural circulation system by proper orthogonal decomposition[J]. Progress in Nuclear Energy, 2019, 114: 191-200. doi: 10.1016/j.pnucene.2019.03.010
    [6]
    SMITH T R, MOEHLIS J, HOLMES P. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial[J]. Nonlinear Dynamics, 2005, 41(1-3): 275-307. doi: 10.1007/s11071-005-2823-y
    [7]
    LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066
    [8]
    GERMAN P, TANO M, FIORINA C, et al. GeN-ROM—An OpenFOAM®-based multiphysics reduced-order modeling framework for the analysis of Molten Salt Reactors[J]. Progress in Nuclear Energy, 2022, 146: 104148. doi: 10.1016/j.pnucene.2022.104148
    [9]
    ZAREI M. On a reduced order modeling of the nuclear reactor dynamics[J]. Applied Mathematics and Computation, 2021, 393: 125819. doi: 10.1016/j.amc.2020.125819
    [10]
    SUN Y, YANG J H, WANG Y H, et al. A POD reduced-order model for resolving the neutron transport problems of nuclear reactor[J]. Annals of Nuclear Energy, 2020, 149: 107799. doi: 10.1016/j.anucene.2020.107799
    [11]
    VALOCCHI G, TOMMASI J, RAVETTO P. Reduced order models in reactor kinetics: a comparison between point kinetics and multipoint kinetics[J]. Annals of Nuclear Energy, 2020, 147: 107702. doi: 10.1016/j.anucene.2020.107702
    [12]
    ZHANG C Y, CHEN G. Fast solution of neutron transport SP3 equation by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 120: 707-714. doi: 10.1016/j.anucene.2018.06.042
    [13]
    BUCHAN A G, CALLOO A A, GOFFIN M G, et al. A POD reduced order model for resolving angular direction in neutron/photon transport problems[J]. Journal of Computational Physics, 2015, 296: 138-157. doi: 10.1016/j.jcp.2015.04.043
    [14]
    CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Current Science, 2000, 78(7): 808-817.
    [15]
    BENNER P, GRIVET-TALOCIA S, QUARTERONI A, et al. Model order reduction: volume 2: snapshot-based methods and algorithms[M]. Boston: De Gruyter, 2020: 307-308.
    [16]
    SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. doi: 10.1017/S0022112010001217
    [17]
    NATHAN K J, STEVEN L B, BINGNI W B, et al. Dynamic mode decomposition: data-driven modeling of complex systems[M]. SIAM, 2016: 1.
    [18]
    BRUNTON S L, KUTZ J N. Data-driven science and engineering: machine learning, dynamical systems, and control[M]. 2nd ed. Cambridge: Cambridge University Press, 2022: 281-283.
    [19]
    TU J H. Dynamic mode decomposition: theory and applications[D]. Princeton: Princeton University, 2013.
    [20]
    DI RONCO A, CAMMI A, GIACOBBO F, et al. Application of the dynamic mode decomposition approach to the dispersion of radioactive contaminants in air[C]//Proceedings of the 27th International Conference Nuclear Energy for New Europe (NENE 2018). Ljubljana. Nuclear Society of Slovenia. 2018: 1-8.
    [21]
    DI RONCO A, INTROINI C, CERVI E, et al. Dynamic mode decomposition for the stability analysis of the Molten Salt Fast Reactor core[J]. Nuclear Engineering and Design, 2020, 362: 110529. doi: 10.1016/j.nucengdes.2020.110529
    [22]
    CHEN K K, TU J H, ROWLEY C W. Variants of dynamic mode decomposition: boundary condition, koopman, and fourier analyses[J]. Journal of Nonlinear Science, 2012, 22(6): 887-915. doi: 10.1007/s00332-012-9130-9
    [23]
    SCHMID P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54: 225-254. doi: 10.1146/annurev-fluid-030121-015835
    [24]
    PROCTOR J L, BRUNTON S L, KUTZ J N. Dynamic mode decomposition with control[J]. SIAM Journal on Applied Dynamical Systems, 2016, 15(1): 142-161. doi: 10.1137/15M1013857
    [25]
    XIA G L, PENG M J, DU X. Calculation analysis on the natural circulation of a passive residual heat removal system for IPWR[J]. Annals of Nuclear Energy, 2014, 72: 189-197. doi: 10.1016/j.anucene.2014.02.018
    [26]
    刘建阁,彭敏俊,张志俭,等. 套管式直流蒸汽发生器负荷跟随动态特性分析[J]. 原子能科学技术,2010, 44(2): 175-182.
    [27]
    GENGLEI X, MINJUN P, XUE D. Analysis of load-following characteristics for an integrated pressurized water reactor[J]. International Journal of Energy Research, 2014, 38(3): 380-390. doi: 10.1002/er.3053
    [28]
    GAVISH M, DONOHO D L. The optimal hard threshold for singular values is $ {4 / \sqrt{3}} $[J]. IEEE Transactions on Information Theory, 2014, 60(8): 5040-5053. doi: 10.1109/TIT.2014.2323359
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (105) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return