Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Liu Shasha, Ma Zaiyong, Zhang Rui, Sun Wan, Zhang Luteng, Zhu Longxiang, Pan Liangming. Experimental Study on Axial Evolution Characteristics of Single-phase Turbulent Mixing in Rod Bundle Sub-channels with Grids[J]. Nuclear Power Engineering, 2024, 45(3): 104-109. doi: 10.13832/j.jnpe.2024.03.0104
Citation: Liu Shasha, Ma Zaiyong, Zhang Rui, Sun Wan, Zhang Luteng, Zhu Longxiang, Pan Liangming. Experimental Study on Axial Evolution Characteristics of Single-phase Turbulent Mixing in Rod Bundle Sub-channels with Grids[J]. Nuclear Power Engineering, 2024, 45(3): 104-109. doi: 10.13832/j.jnpe.2024.03.0104

Experimental Study on Axial Evolution Characteristics of Single-phase Turbulent Mixing in Rod Bundle Sub-channels with Grids

doi: 10.13832/j.jnpe.2024.03.0104
  • Received Date: 2023-06-30
  • Rev Recd Date: 2023-07-23
  • Publish Date: 2024-06-13
  • The turbulent mixing between rod bundle sub-channels is a key part that affects the accurate calculation of thermal parameters in the reactor core, which is of great significance to improve the accuracy of reactor safety analysis. For the turbulent mixing between rod bundle sub-channels with grids, the existing research often uses the thermal diffusion coefficient to study its average effect, and lacks detailed analysis of its axial evolution characteristics. In this paper, based on the tracer analysis method, the single-phase turbulent mixing characteristics of the two sub-channels with and without the grid were studied experimentally, and the experimental results showed that the grid had a significant enhancement effect on single-phase turbulent mixing. Compared with the non-grid condition, the enhancement effect of turbulent mixing at the grid was the strongest due to the strong disturbance of the grid and cross-flow effect, the near downstream of the grid was the weakest due to the reverse cross-flow effect, the far downstream of the grid was slightly stronger than the upstream of the grid, and the enhancement effect could last for a long distance.

     

  • loading
  • [1]
    于平安,朱瑞安,喻真烷,等. 核反应堆热工分析[M]. 第三版. 上海: 上海交通大学出版社,2002: 14-15.
    [2]
    ROGERS J T, TODREAS N E. Coolant interchannel mixing in reactor fuel rod bundles: single-phase coolants: NSA-23-021488[R]. Toronto: Canadian General Electric Co. , Ltd. , 1969.
    [3]
    刘余,杜思佳,李仲春. 子通道分析中的湍流交混研究综述[J]. 核动力工程,2017, 38(3): 132-136. doi: 10.13832/j.jnpe.2017.03.0132
    [4]
    BAGLIETTO E, NINOKATA H. Turbulence models evaluation for heat transfer simulation in tight lattice fuel bundles[C]//Proceedings of the Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Korea: Korea Nuclear Society, 2003.
    [5]
    CHANG D, TAVOULARIS S. Unsteady numerical simulations of turbulence and coherent structures in axial flow near a narrow gap[J]. Journal of Fluids Engineering, 2005, 127(3): 458-466. doi: 10.1115/1.1900140
    [6]
    CHANG D, TAVOULARIS S. Numerical simulation of turbulent flow in a 37-rod bundle[J]. Nuclear Engineering and Design, 2007, 237(6): 575-590. doi: 10.1016/j.nucengdes.2006.08.001
    [7]
    NINOKATA H, MERZARI E, KHAKIM A. Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration[J]. Nuclear Engineering and Design, 2009, 239(5): 855-866. doi: 10.1016/j.nucengdes.2008.10.030
    [8]
    GALBRAITH K P. Single phase turbulent mixing between adjacent channels in rod bundles[D]. Corvallis: Oregon State University, 1971.
    [9]
    SADATOMI M, KAWAHARA A, SATO Y. Prediction of the single-phase turbulent mixing rate between two parallel subchannels using a subchannel geometry factor[J]. Nuclear Engineering and Design, 1996, 162(2-3): 245-256. doi: 10.1016/0029-5493(95)01129-3
    [10]
    SADATOMI M, KAWAHARA A, KANO K, et al. Single- and two-phase turbulent mixing rate between adjacent subchannels in a vertical 2×3 rod array channel[J]. International Journal of Multiphase Flow, 2004, 30(5): 481-498. doi: 10.1016/j.ijmultiphaseflow.2004.03.001
    [11]
    JEONG H Y, HA K S, KWON Y M, et al. A dominant geometrical parameter affecting the turbulent mixing rate in rod bundles[J]. International Journal of Heat and Mass Transfer, 2007, 50(5-6): 908-918. doi: 10.1016/j.ijheatmasstransfer.2006.08.023
    [12]
    王正杰,贾斗南,喻真烷. 模拟元件棒束内子通道间单相湍流交混的实验研究[J]. 核科学与工程,1983, 3(2): 107-114,106.
    [13]
    程诚,叶停朴,卢冬华,等. 棒束及格架布置对燃料组件搅混特性影响的实验研究[J]. 核动力工程,2022, 43(2): 22-27. doi: 10.13832/j.jnpe.2022.02.0022
    [14]
    CARLUCCI L N, HAMMOUDA N, ROWE D S. Two-phase turbulent mixing and buoyancy drift in rod bundles[J]. Nuclear Engineering and Design, 2004, 227(1): 65-84. doi: 10.1016/j.nucengdes.2003.08.003
    [15]
    韩斌,杨保文,张汇,等. 定位格架压降关系式及CFD数值模拟研究[J]. 核动力工程,2017, 38(2): 169-174. doi: 10.13832/j.jnpe.2017.02.0169
    [16]
    YLÖNEN A, BISSELS W M, PRASSER H M. Single-phase cross-mixing measurements in a 4×4 rod bundle[J]. Nuclear Engineering and Design, 2011, 241(7): 2484-2493. doi: 10.1016/j.nucengdes.2011.04.014
    [17]
    CHA J H, CHO M H. A study on coolant mixing in multirod bundle subchannels[J]. Nuclear Engineering and Technology, 1970, 2(1): 19-25.
    [18]
    JU H R, WANG M J, CHEN C, et al. Numerical study on the turbulent mixing in channel with Large Eddy Simulation (LES) using spectral element method[J]. Nuclear Engineering and Design, 2019, 348: 169-176. doi: 10.1016/j.nucengdes.2019.04.017
    [19]
    NAVARRO M A, SANTOS A A C. Evaluation of a numeric procedure for flow simulation of a 5×5 PWR rod bundle with a mixing vane spacer[J]. Progress in Nuclear Energy, 2011, 53(8): 1190-1196. doi: 10.1016/j.pnucene.2011.08.002
    [20]
    LIU C C, FERNG Y M, SHIH C K. CFD evaluation of turbulence models for flow simulation of the fuel rod bundle with a spacer assembly[J]. Applied Thermal Engineering, 2012, 40: 389-396. doi: 10.1016/j.applthermaleng.2012.02.027
    [21]
    WANG Y J, WANG M J, JU H R, et al. CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR[J]. Nuclear Engineering and Technology, 2020, 52(7): 1386-1395. doi: 10.1016/j.net.2019.12.012
    [22]
    BIEDER U, FALK F, FAUCHET G. LES analysis of the flow in a simplified PWR assembly with mixing grid[J]. Progress in Nuclear Energy, 2014, 75: 15-24. doi: 10.1016/j.pnucene.2014.03.014
    [23]
    SMITH III L D, CONNER M E, LIU B, et al. Benchmarking computational fluid dynamics for application to PWR fuel[C]//10th International Conference on Nuclear Engineering. Arlington: ASME, 2002: 823-830.
    [24]
    XIONG J B, QU W H, ZHANG T F, et al. Experimental investigation on split-mixing-vane forced mixing in pressurized water reactor fuel assembly[J]. Annals of Nuclear Energy, 2020, 143: 107450. doi: 10.1016/j.anucene.2020.107450
    [25]
    曹念,郎雪梅,卢冬华,等. 燃料组件单相交混系数试验研究[J]. 核动力工程,2009, 30(5): 22-25,47.
    [26]
    张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (22) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return