Citation: | Zhang Liqin, Huang Yanping, Zeng Xiaokang, Gong Houjun. Simulation of Thermodynamic Characteristics of Supercritical Carbon Dioxide Brayton Cycle System Based on Modelica[J]. Nuclear Power Engineering, 2024, 45(3): 124-131. doi: 10.13832/j.jnpe.2024.03.0124 |
[1] |
FERRERO S, BATET L, LINARES J I, et al. A modelica dynamic model of a supercritical CO2 energy conversion system for EU-DEMO[J]. Fusion Engineering and Design, 2021, 173: 112826. doi: 10.1016/j.fusengdes.2021.112826
|
[2] |
DELGOSHAEI P, HEIDARINEJAD M, AUSTIN M A. Semantic inference-based control strategies for building HVAC systems using modelica-based physical models[J]. Procedia Engineering, 2017, 205: 1975-1982. doi: 10.1016/j.proeng.2017.10.060
|
[3] |
刘伟,丁建完,赵建军,等. 基于Modelica的载人航天器环热控系统建模仿真[J]. 航天器环境工程,2017, 34(2): 143-149.
|
[4] |
李冰洁,张晓斌,吴小华,等. 基于Dymola及Modelica语言的飞机三级发电机的建模与仿真[J]. 微电机,2016, 49(3): 40-44.
|
[5] |
杨世铭,陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社,1982: 246.
|
[6] |
陈卓如,金朝铭. 工程流体力学[M]. 第二版. 北京: 高等教育出版社,1992: 265.
|
[7] |
GAO C T, WU P, SHAN J Q, et al. Preliminary study of system design and safety analysis methodology for supercritical carbon dioxide Brayton cycle direct-cooled reactor system[J]. Annals of Nuclear Energy, 2020, 147: 107734. doi: 10.1016/j.anucene.2020.107734
|
[8] |
CARSTENS N A, HEJZLAR P, DRISCOLL M J. Control system strategies and dynamic response for supercritical CO2 power conversion cycles: MIT-GFR-038[R]. Cambrige: MIT Nuclear Engineering Department, 2006.
|
[9] |
CARSTENS N A. Control strategies for supercritical carbon dioxide power conversion systems[D]. Cambridge: Massachusetts Institute of Technology, 2007.
|