Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Liu Zhen, Zhang Xiaohong, Qiao Yingjie, He Kun, Du Peinan, Zhang Ruiqian, Du Shiyu. Study on Weight-gain Model of FeCrAl Alloy by Steam Oxidation at Medium and High Temperature[J]. Nuclear Power Engineering, 2024, 45(3): 139-145. doi: 10.13832/j.jnpe.2024.03.0139
Citation: Liu Zhen, Zhang Xiaohong, Qiao Yingjie, He Kun, Du Peinan, Zhang Ruiqian, Du Shiyu. Study on Weight-gain Model of FeCrAl Alloy by Steam Oxidation at Medium and High Temperature[J]. Nuclear Power Engineering, 2024, 45(3): 139-145. doi: 10.13832/j.jnpe.2024.03.0139

Study on Weight-gain Model of FeCrAl Alloy by Steam Oxidation at Medium and High Temperature

doi: 10.13832/j.jnpe.2024.03.0139
  • Received Date: 2023-07-10
  • Rev Recd Date: 2023-08-18
  • Publish Date: 2024-06-13
  • In order to predict the steam oxidation behavior of FeCrAl alloy at different temperatures and provide the model for the evolution simulation of the performance of FeCrAl cladding under loss of coolant accident (LOCA), a two-stage differential oxidation weight-gain model was proposed based on the reaction and diffusion control mechanisms, and a parameter calibration method was also presented. Combined with the experimental data from FeCrAl steam oxidation tests at high temperature (900-1200℃) and medium temperature (400℃), the model can uniformly describe the weight-gain behavior of FeCrAl alloy in the temperature range of 400-1200℃, and the error with experimental data is controlled within 20%. At the same time, it is observed that the critical weight-gain of the reaction-diffusion mechanism is basically unchanged at 400-900℃, but increases significantly at higher temperature, because the oxidation layer grows too fast to form the dense oxidation protective layer. In addition, considering the influence of initial oxide layer from water corrosion and the change of steam pressure during LOCA, a modified scheme of the oxidation-weight gain model is given. This study is expected to provide oxidation model and parameters for the failure behavior simulation of the FeCrAl alloy cladding under LOCA accidents.

     

  • loading
  • [1]
    ALLEN T, BUSBY J, MEYER M, et al. Materials challenges for nuclear systems[J]. Materials Today, 2010, 13(12): 14-23. doi: 10.1016/S1369-7021(10)70220-0
    [2]
    AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943-1962. doi: 10.1016/j.engfailanal.2011.06.010
    [3]
    TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1-3): 420-435. doi: 10.1016/j.jnucmat.2013.06.041
    [4]
    ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
    [5]
    TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
    [6]
    WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032
    [7]
    UNOCIC K A, HOELZER D T, PINT B A. Microstructure and environmental resistance of low Cr ODS FeCrAl[J]. Materials at High Temperatures, 2015, 32(1-2): 123-132. doi: 10.1179/0960340914Z.00000000088
    [8]
    JÖNSSON B, LU Q, CHANDRASEKARAN D, et al. Oxidation and creep limited lifetime of kanthal APMT®, a dispersion strengthened FeCrAlMo alloy designed for strength and oxidation resistance at high temperatures[J]. Oxidation of Metals, 2013, 79(1-2): 29-39. doi: 10.1007/s11085-012-9324-4
    [9]
    PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3): 190-196. doi: 10.1007/s40553-015-0056-7
    [10]
    TERENTYEV D, HAFEZ HAGHIGHAT S M, SCHÄUBLIN R. Strengthening due to Cr-rich precipitates in Fe–Cr alloys: effect of temperature and precipitate composition[J]. Journal of Applied Physics, 2010, 107(6): 061806. doi: 10.1063/1.3340522
    [11]
    FIELD K G, HU X X, LITTRELL K C, et al. Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys[J]. Journal of Nuclear Materials, 2015, 465: 746-755. doi: 10.1016/j.jnucmat.2015.06.023
    [12]
    YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
    [13]
    SUN Z Q, BEI H B, YAMAMOTO Y. Microstructural control of FeCrAl alloys using Mo and Nb additions[J]. Materials Characterization, 2017, 132: 126-131. doi: 10.1016/j.matchar.2017.08.008
    [14]
    SUN Z Q, YAMAMOTO Y. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication[J]. Materials Science and Engineering:A, 2017, 700: 554-561. doi: 10.1016/j.msea.2017.06.036
    [15]
    BADINI C, LAURELLA F. Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism[J]. Surface and Coatings Technology, 2001, 135(2-3): 291-298. doi: 10.1016/S0257-8972(00)00989-0
    [16]
    WANG P, QI W, YANG K, et al. Systematic investigation of the oxidation behavior of Fe-Cr-Al cladding alloys in high-temperature steam[J]. Corrosion Science, 2022, 207: 110595. doi: 10.1016/j.corsci.2022.110595
    [17]
    PINT B A, DRYEPONDT S, UNOCIC K A, et al. Development of ODS FeCrAl for compatibility in fusion and fission energy applications[J]. JOM, 2014, 66(12): 2458-2466. doi: 10.1007/s11837-014-1200-z
    [18]
    CHENG T, KEISER J R, BRADY M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. Journal of Nuclear Materials, 2012, 427(1-3): 396-400. doi: 10.1016/j.jnucmat.2012.05.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (32) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return